This site is supported by donations to The OEIS Foundation.

"Email this user" was broken Aug 14 to 9am Aug 16. If you sent someone a message in this period, please send it again.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A123021 Bezier transform on A078812: Morgan-Voyce polynomial triangular array. 0
 1, 2, -1, 3, -2, 4, -2, -2, 1, 5, 0, -9, 6, -1, 6, 5, -24, 18, -4, 7, 14, -49, 36, -4, -4, 1, 8, 28, -84, 50, 20, -30, 10, -1, 9, 48, -126, 36, 115, -120, 45, -6, 10, 75, -168, -48, 358, -335, 120, -6, -6, 1, 11, 110, -198, -264, 847, -714, 175, 84, -63, 14, -1 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 LINKS Eric Weisstein's World of Mathematics, Morgan-Voyce Polynomials FORMULA T(n,k)=binomial[n + k + 1, n - k] (* Bezier Transform*) t'(n,k)=t(n,k)*p^k*(1 - p)^(n - k) MATHEMATICA T[n_, k_] := Binomial[n + k + 1, n - k] a = Table[CoefficientList[Sum[T[n, k]*p^k*(1 - p)^(n - k), {k, 0, n}], p], {n, 0, 10}]; Flatten[a] CROSSREFS Cf. A078812. Sequence in context: A049773 A261401 A217669 * A286632 A286585 A028914 Adjacent sequences:  A123018 A123019 A123020 * A123022 A123023 A123024 KEYWORD sign,uned,tabl AUTHOR Roger L. Bagula and Gary W. Adamson, Sep 24 2006 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.