login
a(n) = A122192(n)/6.
2

%I #10 Jul 12 2021 02:41:03

%S 1,0,-253,-1288,191521,1629320,-141854525,-1729034384,103325091969,

%T 1676517701264,-73862084838333,-1537330036703384,51664189190888737,

%U 1355829753195189272,-35196896202269431421,-1160994902209537876768,23182613727557891170817,970833262148740191853344

%N a(n) = A122192(n)/6.

%H G. C. Greubel, <a href="/A123013/b123013.txt">Table of n, a(n) for n = 0..500</a>

%H <a href="/index/Rec#order_06">Index entries for linear recurrences with constant coefficients</a>, signature (0,-759,-2576,-759,0,-1).

%F G.f.: (1 + 506*x^2 + 1288*x^3 + 253*x^4)/(1 + 759*x^2 + 2576*x^3 + 759*x^4 + x^6). - _G. C. Greubel_, Jul 11 2021

%t LinearRecurrence[{0,-759,-2576,-759,0,-1}, {1,0,-253,-1288,191521,1629320}, 31] (* _G. C. Greubel_, Jul 11 2021 *)

%o (Sage)

%o def A123013_list(prec):

%o P.<x> = PowerSeriesRing(ZZ, prec)

%o return P( (1+506*x^2+1288*x^3+253*x^4)/(1+759*x^2+2576*x^3+759*x^4 +x^6) ).list()

%o A123013_list(30) # _G. C. Greubel_, Jul 11 2021

%Y Cf. A122192.

%K sign

%O 0,3

%A _N. J. A. Sloane_, Nov 12 2006