login
A123002
Triangle read by rows: T(n, k) = 2^(n-1)*(2*k - 1) - 2^(k-1)*(2*n - 1).
1
0, -1, 0, -1, 2, 0, 1, 10, 12, 0, 7, 30, 44, 40, 0, 21, 74, 116, 136, 112, 0, 51, 166, 268, 344, 368, 288, 0, 113, 354, 580, 776, 912, 928, 704, 0, 239, 734, 1212, 1656, 2032, 2272, 2240, 1664, 0, 493, 1498, 2484, 3432, 4304, 5024, 5440, 5248, 3840, 0
OFFSET
1,5
FORMULA
T(n, k) = 2^(n-1)*(2*k - 1) - 2^(k-1)*(2*n - 1).
Sum_{k=1..n} T(n, k) = 2^(n-1)*(n^2 - 4*n + 2) + (2*n - 1). - G. C. Greubel, Jul 14 2021
EXAMPLE
Triangle begins as:
0;
-1, 0;
-1, 2, 0;
1, 10, 12, 0;
7, 30, 44, 40, 0;
21, 74, 116, 136, 112, 0;
MATHEMATICA
T[n_, k_]:= 2^(n-1)*(2*k-1) -2^(k-1)*(2*n-1);
Table[T[n, k], {n, 12}, {k, n}]//Flatten
PROG
(Magma) [2^(n-1)*(2*k-1) -2^(k-1)*(2*n-1): k in [1..n], n in [1..12]]; // G. C. Greubel, Jul 14 2021
(Sage) flatten([[2^(n-1)*(2*k-1) -2^(k-1)*(2*n-1) for k in (1..n)] for n in (1..12)]) # G. C. Greubel, Jul 14 2021
CROSSREFS
Sequence in context: A185410 A264676 A091803 * A261161 A361951 A137514
KEYWORD
sign,tabl
AUTHOR
Roger L. Bagula, Sep 23 2006
EXTENSIONS
Edited by N. J. A. Sloane, Oct 01 2006
STATUS
approved