login
A122996
Expansion of (1+6*x)/(1-x-49*x^2).
4
1, 7, 56, 399, 3143, 22694, 176701, 1288707, 9947056, 73093699, 560499443, 4142090694, 31606563401, 234569007407, 1783290614056, 13277171976999, 100658412065743, 751239838938694, 5683502030160101, 42494254138156107
OFFSET
0,2
FORMULA
a(n) = a(n-1) + 49*a(n-2). - Philippe Deléham, Mar 26 2009
a(n) = (1/2 + 13*sqrt(197)/394)*(1/2 + sqrt(197)/2)^n + (1/2 - 13*sqrt(197)/394)*(1/2 - sqrt(197)/2)^n. - Antonio Alberto Olivares, Jun 06 2011
a(n) = (7*i)^n*( ChebyshevU(n, -i/14) - (6*i/7)*ChebyshevU(n-1, -i/14) ). - G. C. Greubel, Dec 23 2021
MATHEMATICA
M:= {{0, 1}, {1, 1/7}}; v[1] = {1, 1}; v[n_]:= v[n]= M.v[n-1];
Table[v[n][[1]]*7^(n-1), {n, 30}]
LinearRecurrence[{1, 49}, {1, 7}, 40] (* G. C. Greubel, Dec 23 2021 *)
PROG
(PARI) Vec((1+6*x)/(1-x-49*x^2) + O(x^30)) \\ Michel Marcus, Jan 28 2015
(Sage) [(7*i)^n*( chebyshev_U(n, -i/14) - (6*i/7)*chebyshev_U(n-1, -i/14) ) for n in (0..40)] # G. C. Greubel, Dec 23 2021
(Magma) [n le 2 select 7^(n-1) else Self(n-1) + 49*Self(n-2): n in [1..41]]; // G. C. Greubel, Dec 23 2021
CROSSREFS
Cf. A122995.
Sequence in context: A344066 A104896 A246939 * A343364 A092318 A092315
KEYWORD
nonn,easy
AUTHOR
Roger L. Bagula, Sep 22 2006
EXTENSIONS
Edited by the Associate Editors of the OEIS, Sep 09 2009
STATUS
approved