login
A122910
Expansion of (1-2x-3x^2)/((1-2x)(1+4x)(1-8x)).
1
1, 4, 45, 302, 2636, 20184, 165040, 1305952, 10504896, 83809664, 671394560, 5367485952, 42954566656, 343577810944, 2748857364480, 21989919383552, 175923113148416, 1407369872769024, 11259019111628800, 90071912374730752
OFFSET
0,2
COMMENTS
Let M be the matrix M(n,k)=J(k+1)*sum{j=0..n, (-1)^(n-j)C(n,j)C(j+1,k+1)}. a(n) gives the row sums of M^3.
FORMULA
G.f.: (1-2x-3x^2)/(1-6x-24x^2+64x^3); a(n)=5*8^n/8+7*(-4)^n/24+2^n/12; a(n)=J(n)*A083424(n-1)+J(n+1)*A083424(n) where J(n) are the Jacobsthal numbers A001045(n).
a(0)=1, a(1)=4, a(2)=45, a(n)=6*a(n-1)+24*a(n-2)-64*a(n-3). - Harvey P. Dale, Jun 21 2011
MATHEMATICA
CoefficientList[Series[(1-2x-3x^2)/((1-2x)(1+4x)(1-8x)), {x, 0, 30}], x] (* or *) LinearRecurrence[{6, 24, -64}, {1, 4, 45}, 30] (* Harvey P. Dale, Jun 21 2011 *)
CROSSREFS
Sequence in context: A273848 A123650 A371003 * A343904 A117644 A232729
KEYWORD
easy,nonn
AUTHOR
Paul Barry, Sep 18 2006
STATUS
approved