login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Please make a donation (tax deductible in USA) to keep the OEIS running. Over 5000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A122910 Expansion of (1-2x-3x^2)/((1-2x)(1+4x)(1-8x)). 1
1, 4, 45, 302, 2636, 20184, 165040, 1305952, 10504896, 83809664, 671394560, 5367485952, 42954566656, 343577810944, 2748857364480, 21989919383552, 175923113148416, 1407369872769024, 11259019111628800, 90071912374730752 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

Let M be the matrix M(n,k)=J(k+1)*sum{j=0..n, (-1)^(n-j)C(n,j)C(j+1,k+1)}. a(n) gives the row sums of M^3.

LINKS

Table of n, a(n) for n=0..19.

Index entries for linear recurrences with constant coefficients, signature (6,24,-64).

FORMULA

G.f.: (1-2x-3x^2)/(1-6x-24x^2+64x^3); a(n)=5*8^n/8+7*(-4)^n/24+2^n/12; a(n)=J(n)*A083424(n-1)+J(n+1)*A083424(n) where J(n) are the Jacobsthal numbers A001045(n).

a(0)=1, a(1)=4, a(2)=45, a(n)=6*a(n-1)+24*a(n-2)-64*a(n-3). - Harvey P. Dale, Jun 21 2011

MATHEMATICA

CoefficientList[Series[(1-2x-3x^2)/((1-2x)(1+4x)(1-8x)), {x, 0, 30}], x] (* or *) LinearRecurrence[{6, 24, -64}, {1, 4, 45}, 30] (* Harvey P. Dale, Jun 21 2011 *)

CROSSREFS

Sequence in context: A273832 A273848 A123650 * A117644 A232729 A055602

Adjacent sequences:  A122907 A122908 A122909 * A122911 A122912 A122913

KEYWORD

easy,nonn

AUTHOR

Paul Barry, Sep 18 2006

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified December 10 13:27 EST 2016. Contains 279004 sequences.