OFFSET
0,2
COMMENTS
Let M be the matrix M(n,k)=F(k+1)*sum{j=0..n, (-1)^(n-j)C(n,j)C(j+1,k+1)}. a(n) gives the row sums of M^3.
LINKS
Index entries for linear recurrences with constant coefficients, signature (3,6,-3,-1).
FORMULA
G.f.: (1+x)*(1+x^2) / ( (x^2+4*x-1)*(x^2-x-1) ).
a(n) = (sqrt(5)+2)^n(sqrt(5)/5+3/5)-2^(-n-1)(sqrt(5)-1)^n(sqrt(5)/5+1/5)+ 2^(-n-1)(sqrt(5)+1)^n(sqrt(5)/5-1/5)(-1)^n+(sqrt(5)-2)^n(3/5-sqrt(5)/5)(-1)^n;
MATHEMATICA
Table[Fibonacci[n+1]Fibonacci[2n+2]+Fibonacci[n]Fibonacci[2n], {n, 0, 30}] (* or *) LinearRecurrence[{3, 6, -3, -1}, {1, 4, 19, 79}, 30] (* Harvey P. Dale, Dec 11 2016 *)
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Paul Barry, Sep 18 2006
STATUS
approved