login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A122879 Periodic sequence of period 21. 1
0, 0, 0, 0, 1, 1, 1, 2, 2, 2, 2, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 0, 0, 0, 0, 1, 1, 1, 2, 2, 2, 2, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 0, 0, 0, 0, 1, 1, 1, 2, 2, 2, 2, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 0, 0, 0, 0, 1, 1, 1, 2, 2, 2, 2, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 0, 0, 0, 0, 1, 1, 1, 2, 2, 2, 2, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,8

COMMENTS

See related comments in A122878.

LINKS

Table of n, a(n) for n=1..105.

Index entries for linear recurrences with constant coefficients, signature (1,0,0,0,0,0,-1,1,0,0,0,0,0,-1,1).

FORMULA

a(n+21) = a(n).

a(n)=(1/210)*{21*(n mod 21)+[(n+1) mod 21]+[(n+2) mod 21]-9*[(n+3) mod 21]+[(n+4) mod 21]+[(n+5) mod 21]+[(n+6) mod 21]-9*[(n+7) mod 21]+[(n+8) mod 21]+[(n+9) mod 21)+21*[(n+10) mod 21]+[(n+11) mod 21]+[(n+12) mod 21]+[(n+13) mod 21]-9*[(n+14) mod 21]+[(n+15) mod 21]+[(n+16) mod 21]-9*[(n+17) mod 21]+[(n+18) mod 21]+[(n+19) mod 21]+[(n+20) mod 21]}, with n>=0. - Paolo P. Lava, Oct 23 2008

G.f.: -x^5*(2*x^10-x^7+x^3+1) / ((x-1)*(x^2+x+1)*(x^12-x^11+x^9-x^8+x^6 -x^4+x^3-x+1)). - Colin Barker, Dec 21 2012

MATHEMATICA

PadRight[{}, 120, {0, 0, 0, 0, 1, 1, 1, 2, 2, 2, 2, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2}] (* Harvey P. Dale, Dec 27 2016 *)

CROSSREFS

Cf. A122878.

Sequence in context: A295854 A230630 A037867 * A037866 A306216 A238451

Adjacent sequences:  A122876 A122877 A122878 * A122880 A122881 A122882

KEYWORD

nonn,easy

AUTHOR

Rick L. Shepherd, Sep 16 2006

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 15 15:14 EDT 2019. Contains 328030 sequences. (Running on oeis4.)