The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A122877 Expansion of (1-2*x-3*x^2-(1-x)*sqrt(1-2*x-7*x^2))/(8*x^3). 1
 0, 1, 2, 7, 20, 65, 206, 679, 2248, 7569, 25690, 88055, 303964, 1056497, 3693158, 12977655, 45813008, 162400609, 577843890, 2063053991, 7388487460, 26535797729, 95552015614, 344897769991, 1247685613272 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS Binomial transform is A071357. LINKS Michael De Vlieger, Table of n, a(n) for n = 0..1723 Georg Fischer, Richard J. Mathar, p-finite recurrences from sqrt generating functions, (2020). FORMULA a(n) = Sum_{k=0..n} C(n,k)*2^((k-1)/2)*C((k-1)/2+1)*(1-(-1)^k)/2, where C(n)=A000108(n). a(n) = (1/Pi)*Integral_{x=1-2*sqrt(2)..1+2*sqrt(2)} x^n*sqrt(-x^2+2x+7)*(x-1)/8. a(n) = (Sum_{j=0..n+1} binomial(j,n-j+3)*2^(n-j+2)*binomial(n+1,j))/(n+1). - Vladimir Kruchinin, May 19 2014 D-finite with recurrence: (n+3)*a(n) + (-3*n-4)*a(n-1) + (-5*n-1)*a(n-2) + 7*(n-2)*a(n-3) = 0. - R. J. Mathar, Feb 23 2015 Conjecture: -(n+3)*(n-1)*a(n) + n*(2*n+1)*a(n-1) + 7*n*(n-1)*a(n-2) = 0. - R. J. Mathar, Feb 23 2015 a(n) ~ (1 + 2*sqrt(2))^(n + 3/2) / (sqrt(Pi) * 2^(5/4) * n^(3/2)). - Vaclav Kotesovec, Sep 03 2019 MATHEMATICA CoefficientList[Series[(1 - 2 x - 3 x^2 - (1 - x) Sqrt[1 - 2 x - 7 x^2])/(8 x^3), {x, 0, 24}], x] (* Michael De Vlieger, Apr 17 2020 *) PROG (Maxima) a(n):=sum(binomial(j, n-j+3)*2^(n-j+2)*binomial(n+1, j), j, 0, n+1)/(n+1); /* Vladimir Kruchinin, May 19 2014 */ CROSSREFS Sequence in context: A000935 A035071 A055891 * A192680 A000150 A318232 Adjacent sequences:  A122874 A122875 A122876 * A122878 A122879 A122880 KEYWORD easy,nonn AUTHOR Paul Barry, Sep 16 2006 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 14 04:03 EDT 2020. Contains 336477 sequences. (Running on oeis4.)