login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A122860 Expansion of (1 - phi(-q)^3 / phi(-q^3)) / 6 in powers of q where phi() is a Ramanujan theta function. 3
1, -2, 1, 1, 0, -2, 2, -2, 1, 0, 0, 1, 2, -4, 0, 1, 0, -2, 2, 0, 2, 0, 0, -2, 1, -4, 1, 2, 0, 0, 2, -2, 0, 0, 0, 1, 2, -4, 2, 0, 0, -4, 2, 0, 0, 0, 0, 1, 3, -2, 0, 2, 0, -2, 0, -4, 2, 0, 0, 0, 2, -4, 2, 1, 0, 0, 2, 0, 0, 0, 0, -2, 2, -4, 1, 2, 0, -4, 2, 0, 1 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Cubic AGM theta functions: a(q) (see A004016), b(q) (A005928), c(q) (A005882).

REFERENCES

N. J. Fine, Basic Hypergeometric Series and Applications, Amer. Math. Soc., 1988; p. 84, Eq. (32.64).

LINKS

G. C. Greubel, Table of n, a(n) for n = 1..1000

M. Somos, Introduction to Ramanujan theta functions

Eric Weisstein's World of Mathematics, Ramanujan Theta Functions

FORMULA

Expansion of (1 + a(q) - 2*a(q^2)) / 6 = (1 - b(q)^2 / b(q^2)) / 6 in powers of q where a(), b() are cubic AGM theta functions.

Expansion of (1 - eta(q)^6 * eta(q^6) / (eta(q^2)^3 * eta(q^3)^2)) / 6 in powers of q.

Moebius transform is period 6 sequence [ 1, -3, 0, 3, -1, 0, ...].

a(n) is multiplicative and a(2^e) = (3(-1)^e-1)/2, a(3^e) = 1, a(p^e) = e+1 if p == 1 (mod 6), a(p^e) = (1+(-1)^e)/2 if p == 5 (mod 6).

a(3*n) = a(4*n) = a(n). a(6*n + 5) = 0.

G.f.: (1 - Product_{k>0} (1 + x^(3k)) / (1 + x^k)^3 * (1 - x^k)^3 / (1 - x^(3*k))) / 6 = Sum_{k>0} -(-x)^k / (1 + x^k + x^(2*k)).

G.f.: Sum_{k>0} x^(3*k-2) / (1 + x^(3*k-2)) - x^(3*k-1) / (1 + x^(3*k-1)).

-6 * a(n) = A122859(n) unless n=0. -(-1)^n * a(n) = A113661(n).

EXAMPLE

G.f. = q - 2*q^2 + q^3 + q^4 - 2*q^6 + 2*q^7 - 2*q^8 + q^9 + q^12 + 2*q^13 + ...

MATHEMATICA

a[ n_] := If[ n < 1, 0, -DivisorSum[ n, (-1)^(n/#) JacobiSymbol[ -3, #] &]]; (* Michael Somos, Feb 19 2015 *)

PROG

(PARI) {a(n) = if( n<1, 0, -sumdiv(n, d, (-1)^(n/d) * kronecker(-3, d)))};

(PARI) {a(n) = if( n<1, 0, sumdiv(n, d, (2+(-1)^d) * kronecker(-3, d)))};

(PARI) {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( (1 - eta(x + A)^6 * eta(x^6 + A) / (eta(x^2 + A)^3 * eta(x^3 + A)^2)) / 6, n))};

(PARI) {a(n) = if( n<1, 0, direuler(p=2, n, if(p==2, (1 - 2*X) / (1 - X^2), 1 / ((1-X) * (1 - kronecker(-3, p)*X))))[n])};

(PARI) {a(n) = my(A, p, e); if( n<1, 0, A = factor(n); prod(k=1, matsize(A)[1], [p, e] = A[k, ]; if(p==2, (3*(-1)^e - 1) / 2, p==3, 1, p%6==1, e+1, 1-e%2 )))};

CROSSREFS

Cf. A113661, A122859.

Sequence in context: A322285 A152487 A058394 * A113661 A113974 A123331

Adjacent sequences:  A122857 A122858 A122859 * A122861 A122862 A122863

KEYWORD

sign,mult

AUTHOR

Michael Somos, Sep 15 2006

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 19 02:52 EDT 2019. Contains 322237 sequences. (Running on oeis4.)