login
Connell (3,5)-sum sequence (partial sums of the (3,5)-Connell sequence)
7

%I #7 May 02 2015 12:35:33

%S 1,3,8,16,27,41,58,76,97,121,148,178,211,247,286,328,373,421,470,522,

%T 577,635,696,760,827,897,970,1046,1125,1207,1292,1380,1471,1565,1660,

%U 1758,1859,1963,2070,2180,2293,2409,2528,2650,2775,2903,3034,3168,3305,3445,3588,3734,3883,4035,4190,4346,4505,4667,4832,5000,5171,5345,5522,5702,5885,6071,6260,6452,6647,6845

%N Connell (3,5)-sum sequence (partial sums of the (3,5)-Connell sequence)

%H Grady D. Bullington, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL10/Bullington/bullington7.html">The Connell Sum Sequence</a>, J. Integer Seq. 10 (2007), Article 07.2.6. (includes direct formula for a(n))

%H Douglas E. Iannucci and Donna Mills-Taylor, <a href="http://www.cs.uwaterloo.ca/journals/JIS/IANN/iann1.html">On Generalizing the Connell Sequence</a>, J. Integer Sequences, Vol. 2, 1999, #99.1.7.

%F a(n) = (n-th triangular number)-n+(n-th partial sum of A122799).

%Y Cf. A045930, A001614, A045928, A045929.

%Y Cf. A122793, A122794, A122795, A122797, A122798, A122799, A122800.

%K nonn,easy

%O 1,2

%A Grady Bullington (bullingt(AT)uwosh.edu), Sep 14 2006