login
Connell (5,3)-sum sequence (partial sums of the (5,3)-Connell sequence)
7

%I #7 May 02 2015 12:35:37

%S 1,3,10,22,39,57,80,108,141,179,222,270,319,373,432,496,565,639,718,

%T 802,891,985,1080,1180,1285,1395,1510,1630,1755,1885,2020,2160,2305,

%U 2455,2610,2766,2927,3093,3264,3440,3621,3807,3998,4194,4395,4601,4812,5028,5249,5475,5706,5938,6175,6417,6664,6916,7173,7435,7702,7974,8251,8533,8820,9112,9409,9711,10018,10330,10647,10969

%N Connell (5,3)-sum sequence (partial sums of the (5,3)-Connell sequence)

%H Grady D. Bullington, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL10/Bullington/bullington7.html">The Connell Sum Sequence</a>, J. Integer Seq. 10 (2007), Article 07.2.6. (includes direct formula for a(n))

%H Douglas E. Iannucci and Donna Mills-Taylor, <a href="http://www.cs.uwaterloo.ca/journals/JIS/IANN/iann1.html">On Generalizing the Connell Sequence</a>, J. Integer Sequences, Vol. 2, 1999, #99.1.7.

%F a(n) = (n-th triangular number)-n+(n-th partial sum of A122798).

%Y Cf. A045929, A001614, A045928, A045930.

%Y Cf. A122793, A122794, A122796, A122797, A122798, A122799, A122800.

%K nonn,easy

%O 1,2

%A Grady Bullington (bullingt(AT)uwosh.edu), Sep 14 2006