login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”).

Other ways to Give
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A122779 Expansion of F(q)*F(q^5) where F(q) = eta(q^2)*eta(q^3)^3 / (eta(q)*eta(q^6)). 2
1, 1, 1, -1, -1, 1, 0, 1, -3, -1, 0, -1, 2, -4, -1, -1, -2, 1, -4, 1, 0, 0, 4, 1, 1, 2, 5, 4, 2, -1, 0, 1, 0, 6, 0, -1, 2, -4, 2, -1, 2, -4, -8, 0, 3, 0, -4, -1, 1, 1, -2, -2, -6, 1, 0, -4, -4, -6, 8, 1, -2, 8, -8, -1, -2, 0, 0, -6, 4, 4, -8, 1, 2, 2, 1, 4, 0, 2, 8, 1, 1, -6, 8, 4, 2, -4, 2, 0, 2, -1, 0, 0, 0, 0, 4, 1, 2, 9, 0, -1, 10, 6, 8, 2, 0 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,9

LINKS

G. C. Greubel, Table of n, a(n) for n = 1..1500

FORMULA

Euler transform of period 30 sequence [ 1, 0, -2, 0, 2, -2, 1, 0, -2, 0, 1, -2, 1, 0, -4, 0, 1, -2, 1, 0, -2, 0, 1, -2, 2, 0, -2, 0, 1, -4, ...].

MATHEMATICA

eta[q_] := q^(1/24)*QPochhammer[q]; F[q_]:= eta[q^2]*eta[q^3]^3/(eta[q]*eta[q^6]); a:= CoefficientList[Series[F[q]*F[q^5], {q, 0, 100}], q]; Table[a[[n]], {n, 2, 50}] (* G. C. Greubel, Jul 18 2018 *)

PROG

(PARI) {a(n)=local(A); if(n<1, 0, n--; A=x*O(x^n); A=eta(x^2+A)*eta(x^3+A)^3/eta(x+A)/eta(x^6+A); A=A*subst(A+x*O(x^(n\5)), x, x^5); polcoeff(A, n))}

CROSSREFS

A122777(n)=a(2n).

Sequence in context: A291635 A308243 A268386 * A120323 A320476 A304326

Adjacent sequences: A122776 A122777 A122778 * A122780 A122781 A122782

KEYWORD

sign

AUTHOR

Michael Somos, Sep 10 2006

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 28 10:39 EST 2022. Contains 358411 sequences. (Running on oeis4.)