

A122761


"Completed" Cantor based power of three triangular array: t(n,m) = 3^m*(1+Mod[n,2]): power sets as {1,0} set + {0,2} set = {1,2} set.


0



1, 2, 6, 1, 3, 9, 2, 6, 18, 54, 1, 3, 9, 27, 81, 2, 6, 18, 54, 162, 486, 1, 3, 9, 27, 81, 243, 729, 2, 6, 18, 54, 162, 486, 1458, 4374, 1, 3, 9, 27, 81, 243, 729, 2187, 6561, 2, 6, 18, 54, 162, 486, 1458, 4374, 13122, 39366, 1, 3, 9, 27, 81, 243, 729, 2187, 6561, 19683
(list;
table;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,2


REFERENCES

Lynn Arthur Steen and J. Arthur Seebach, Jr., Counterexamples in Topology, Dover, New York, 1978, pp. 5758


LINKS

Table of n, a(n) for n=1..65.


FORMULA

t(n,m) = 3^m * (1 + mod(n,2)).


EXAMPLE

1
2, 6
1, 3, 9
2, 6, 18, 54
1, 3, 9, 27, 81
2, 6, 18, 54, 162, 486
1, 3, 9, 27, 81, 243, 729


MATHEMATICA

Table[3^m*(1 + Mod[n, 2]), {n, 0, 10}, {m, 0, n}]


CROSSREFS

Sequence in context: A269224 A257240 A121601 * A100469 A124320 A156146
Adjacent sequences: A122758 A122759 A122760 * A122762 A122763 A122764


KEYWORD

nonn,tabl,uned


AUTHOR

Roger L. Bagula, Sep 21 2006


EXTENSIONS

Name and formula corrected  Jon Perry, Oct 15 2012


STATUS

approved



