login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo

Please make a donation to keep the OEIS running. We are now in our 56th year. In the past year we added 10000 new sequences and reached almost 9000 citations (which often say "discovered thanks to the OEIS").
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A122746 G.f.: 1/((1-2*x)*(1-2*x^2)). 19
1, 2, 6, 12, 28, 56, 120, 240, 496, 992, 2016, 4032, 8128, 16256, 32640, 65280, 130816, 261632, 523776, 1047552, 2096128, 4192256, 8386560, 16773120, 33550336, 67100672, 134209536, 268419072, 536854528, 1073709056, 2147450880, 4294901760, 8589869056 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

Equals row sums of triangle A156665. - Gary W. Adamson, Feb 12 2009

a(n) is the number of subsets of {1,2,...,n+1} that contain at least one odd integer. - Geoffrey Critzer, Mar 03 2009

a(n-3) is the number of chiral pairs of color patterns of length n using two colors. Two color patterns are equivalent if the colors are permuted. For example, a string of five colors using exactly two different colors has six chiral pairs: AAAAB-ABBBB, AAABA-ABAAA, AAABB-AABBB, AABAB-ABABB, AABBA-ABBAA, and ABAAB-ABBAB. The number of color patterns of length n using exactly k colors when chiral pairs are counted twice is the Stirling subset number S2(n,k). The number of achiral color patterns of length n using exactly 2 colors is S2(floor(n/2)+1,2). The value of a(n-3) is half the difference of these two. - Robert A. Russell, Feb 01 2018

a(n-2) is the number of chiral pairs for a row of n colors with exactly 2 different colors. If the reverse of a sequence is different, the combination of the two is a chiral pair. For a row of 4 colors using exactly 2 different colors, the chiral pairs are AAAB-BAAA, AABA-ABAA, AABB-BBAA, ABAB-BABA, ABBB-BBBA, and BABB-BBAB. Thus a(4-2) = a(2) = 6. - Robert A. Russell, Jun 10 2018

LINKS

Harvey P. Dale, Table of n, a(n) for n = 0..1000

S. J. Cyvin et al., Theory of polypentagons, J. Chem. Inf. Comput. Sci., 33 (1993), 466-474.

E. Filiol, C. Fontaine, Highly nonlinear balanced Boolean functions with a good correlation-immunity, Lect. Not. Comp. Sci 1403 (1998), 475-488, NL(F_n).

Index entries for linear recurrences with constant coefficients, signature (2,2,-4).

FORMULA

From Alexander Adamchuk, Sep 25 2006: (Start)

a(2k) = A006516(k+1) = 2^k*(2^(k+1) - 1) = A020522(k+1) /2.

a(2k+1) = 2*A006516(k+1) = 2^(k+1)*(2^(k+1) - 1) = A020522(k+1). (End)

a(n) = 2^(n+1) - 2^(floor((n+1)/2)). - Geoffrey Critzer, Mar 03 2009

a(n) = 2*(a(n-1) bitwiseOR a(n-2)), a(0)=1, a(1)=2. - Pierre Charland, Dec 12 2010

G.f.: (1+x*Q(0))/(1-x)^2, where Q(k)= 1 - 1/(2^k - 2*x*2^(2*k)/(2*x*2^k - 1/(1 + 1/(2*2^k - 8*x*2^(2*k)/(4*x*2^k + 1/Q(k+1)))))); (continued fraction). - Sergei N. Gladkovskii, May 23 2013

a(0)=1, a(1)=2, a(2)=6, a(n) = 2*a(n-1) + 2*a(n-2) - 4*a(n-3). - Harvey P. Dale, Jun 25 2013

a(n) = (A000079(n+2) - A060546(n+2))/ 2. - Robert A. Russell, Jun 19 2018

a(n) = -a(-3-n) * 2^(n+2 + floor((n+1)/2)) for all n in Z. - Michael Somos, Jul 01 2018

a(n) = (A000918(n+2) - A056453(n+2)) / 2 = A000918(n+2) - A056309(n+2) = A056309(n+2) - A056453(n+2). - Robert A. Russell, Sep 26 2018

EXAMPLE

G.f. = 1 + 2*x + 6*x^2 + 12*x^3 + 28*x^4 + 56*x^5 + 120*x^6 + 240*x^7 + 496*x^8 + ... - Michael Somos, Jul 01 2018

MAPLE

seq(coeff(series(((1-2*x)*(1-2*x^2))^(-1), x, n+1), x, n), n = 0..35); # Muniru A Asiru, Sep 27 2018

MATHEMATICA

RecurrenceTable[{a[n] == 2 (BitOr[a[n - 1], a[n - 2]]), a[0] == 1, a[1] == 2}, a, {n, 0, 32}] (* Geoffrey Critzer, Jan 09 2011 *)

CoefficientList[Series[1/((1-2x)(1-2x^2)), {x, 0, 40}], x] (* or *) LinearRecurrence[{2, 2, -4}, {1, 2, 6}, 40] (* Harvey P. Dale, Jun 25 2013 *)

Table[(StirlingS2[n, 2] - StirlingS2[Floor[n/2]+1, 2])/2, {n, 3, 30}] (* Robert A. Russell, Jan 29 2018 *)

a[ n_] := 2^(n + 1) - 2^Quotient[n + 1, 2]; (* Michael Somos, Jul 01 2018 *)

PROG

(PARI) {a(n) = 2^(n+1) - 2^((n+1)\2)}; /* Michael Somos, Jul 01 2018 */

(GAP) List([0..35], n->2^(n+1)-2^(QuoInt(n+1, 2))); # Muniru A Asiru, Sep 27 2018

CROSSREFS

Essentially the same as A032085.

Cf. A000079, A060546.

Cf. A006516, A020522, A156665.

Cf. A000918, A056309, A056453.

Sequence in context: A284449 A011949 A089820 * A191394 A237500 A330455

Adjacent sequences:  A122743 A122744 A122745 * A122747 A122748 A122749

KEYWORD

nonn

AUTHOR

N. J. A. Sloane, Sep 24 2006

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 1 06:09 EST 2020. Contains 338833 sequences. (Running on oeis4.)