OFFSET
1,1
COMMENTS
p and q cannot both be odd. Thus p=2 or q=2. After 3^2 + 2^7 = 137, all solutions are of the form 2^2 + q^7.
LINKS
Robert Israel, Table of n, a(n) for n = 1..5449
EXAMPLE
a(1) = 3^2 + 2^7 = 137.
a(2) = 2^2 + 7^7 = 823547.
a(3) = 2^2 + 43^7 = 271818611111.
a(4) = 2^2 + 193^7 = 9974730326005061.
a(5) = 2^2 + 349^7 = 630634881591804953.
MAPLE
N:= 10^30: # to get all terms <= N
A:= select(isprime, {137, seq(2^2 + q^7, q = select(isprime, [2, seq(i, i=3..floor((N-4)^(1/7)), 2)]))}):
sort(convert(A, list)); # Robert Israel, Jan 24 2018
CROSSREFS
KEYWORD
nonn
AUTHOR
Jonathan Vos Post, Sep 22 2006
EXTENSIONS
More terms from Robert Israel, Jan 24 2018
STATUS
approved