login
A122608
a(1) = 1; a(2) = 1; a(3) = 1; a(4) = 1; a(5) = 1; a(n) = a(n-1)+4a(n-2)-3a(n-3)-3a(n-4)+a(n-5) for n >= 6.
0
1, 1, 1, 1, 1, 0, -1, -6, -12, -32, -59, -134, -244, -519, -948, -1949, -3586, -7225, -13397, -26640, -49744, -98024, -184114, -360455, -680247, -1325397, -2510702, -4874298, -9260629, -17929771, -34142684, -65967689, -125841523, -242755543, -463720287, -893457507, -1708515146
OFFSET
1,8
LINKS
Peter Steinbach, Golden fields: a case for the heptagon, Math. Mag. Vol. 70, No. 1, Feb. 1997, 22-31.
FORMULA
G.f.: -(2*x-1)*(x+1)*(x^2-x-1)/(-1+x^5-3*x^4-3*x^3+4*x^2+x). [Maksym Voznyy (voznyy(AT)mail.ru), Aug 11 2009]
MAPLE
a[1]:=1: a[2]:=1: a[3]:=1: a[4]:=1: a[5]:=1: for n from 6 to 37 do a[n]:=a[n-1]+4*a[n-2]-3*a[n-3]-3*a[n-4]+a[n-5] od: seq(a[n], n=1..37);
MATHEMATICA
M = {{0, 1, 0, 0, 0}, {0, 0, 1, 0, 0}, {0, 0, 0, 1, 0}, {0, 0, 0, 0, 1}, {1, -3, -3, 4, 1}}; v[1] = {1, 1, 1, 1, 1}; v[n_] := v[n] = M.v[n - 1] a = Table[Floor[v[n][[1]]], {n, 1, 50}]
nxt[{a_, b_, c_, d_, e_}]:={b, c, d, e, e+4d-3c-3b+a}; NestList[nxt, {1, 1, 1, 1, 1}, 50][[;; , 1]] (* Harvey P. Dale, Aug 02 2024 *)
CROSSREFS
Cf. A066170.
Sequence in context: A065992 A263587 A085611 * A268283 A372702 A196992
KEYWORD
sign
AUTHOR
EXTENSIONS
Edited by N. J. A. Sloane, Oct 08 2006
STATUS
approved