OFFSET
1,13
LINKS
Index entries for linear recurrences with constant coefficients, signature (1, 9, -8, -28, 21, 35, -20, -15, 5, 1).
FORMULA
G.f.:((5*x^4-5*x^2+1)*(x^5-3*x^4-3*x^3+4*x^2+x-1))/((x-1)*(x^3-2*x^2-x+1)*(x^6+8*x^5+8*x^4-6*x^3-6*x^2+x+1)). [Maksym Voznyy (voznyy(AT)mail.ru), Jul 28 2009]
MAPLE
a[1]:=1: a[2]:=0: a[3]:=0: a[4]:=0: a[5]:=0: a[6]:=0: a[7]:=0: a[8]:=0: a[9]:=0: a[10]:=0: for n from 11 to 39 do a[n]:=a[n-1]+9*a[n-2]-8*a[n-3]-28*a[n-4]+21*a[n-5]+35*a[n-6]-20*a[n-7]-15*a[n-8]+5*a[n-9]+a[n-10] od: seq(a[n], n=1..39);
MATHEMATICA
M = {{0, 1, 0, 0, 0, 0, 0, 0, 0, 0}, {0, 0, 1, 0, 0, 0, 0, 0, 0, 0}, {0, 0, 0, 1, 0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 1, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 1, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0, 1, 0, 0, 0}, {0, 0, 0, 0, 0, 0, 0, 1, 0, 0}, {0, 0, 0, 0, 0, 0, 0, 0, 1, 0}, {0, 0, 0, 0, 0, 0, 0, 0, 0, 1}, {1, 5, -15, -20, 35, 21, -28, -8, 9, 1}}; v[1] = {1, 0, 0, 0, 0, 0, 0, 0, 0, 0}; v[n_] := v[n] = M.v[n - 1] a = Table[Floor[v[n][[1]]], {n, 1, 50}]
LinearRecurrence[{1, 9, -8, -28, 21, 35, -20, -15, 5, 1}, {1, 0, 0, 0, 0, 0, 0, 0, 0, 0}, 50] (* Harvey P. Dale, Dec 03 2014 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Roger L. Bagula and Gary W. Adamson, Sep 20 2006
EXTENSIONS
Edited by N. J. A. Sloane, Oct 08 2006
STATUS
approved