login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Please make a donation (tax deductible in USA) to keep the OEIS running. Over 5000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A122598 a[0] = 0; a[1] = 1; if n is odd then a[n] = 2*a[n - 1] - ( n - 1)*a[n - 2] otherwise a[n] = 2*(a[n - 1] - (n - 2)*a[n - 2])]. 0
0, 1, 2, 2, -4, -16, 0, 96, 192, -384, -3840, -3840, 69120, 184320, -1290240, -5160960, 25804800, 134184960, -557383680, -3530096640, 13005619200, 96613171200, -326998425600, -2779486617600, 8828957491200, 84365593804800, -255058771968000, -2703622982860800, 7855810176614400 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,3

REFERENCES

E. S. R. Gopal, Specific Heats at Low Temperatures, Plenum Press, New York, 1966, pages 36-40.

LINKS

Table of n, a(n) for n=1..29.

FORMULA

a(n) = If[Mod[n, 2] == 1, 2*a(n - 1) - (n - 1)*a(n - 2), 2*(a(n - 1) - (n - 2)*a(n - 2))]

MATHEMATICA

a[0] = 0; a[1] = 1; a[n_] := a[n] = If[Mod[n, 2] == 1, 2*a[n - 1] - ( n - 1)*a[n - 2], 2*(a[n - 1] - (n - 2)*a[n - 2])] b = Table[a[n], {n, 0, 30}]

nxt[{n_, a_, b_}]:={n+1, b, If[EvenQ[n], 2*b-n*a, 2(b-(n-1)a)]}; Transpose[ NestList[ nxt, {1, 0, 1}, 30]][[2]] (* Harvey P. Dale, Dec 15 2014 *)

CROSSREFS

Cf. A000898, A121966.

Sequence in context: A153968 A153965 A121221 * A257609 A087783 A176190

Adjacent sequences:  A122595 A122596 A122597 * A122599 A122600 A122601

KEYWORD

sign

AUTHOR

Roger L. Bagula, Sep 19 2006

EXTENSIONS

Edited by N. J. A. Sloane, Oct 01, 2006

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified December 9 20:00 EST 2016. Contains 278986 sequences.