OFFSET
0,3
COMMENTS
Based on the cubic elliptic invariant j(x)=((x^8 + 14*x^4 + 1)^3)^3/(108*x^4*(x^4 - 1)).
REFERENCES
Harry Hochstadt, The Functions of Mathematical Physics, Wiley, New York (1971), p. 170; also Dover, New York (1986), 129-130.
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..865
MATHEMATICA
nn:=19; CoefficientList[Series[x*(x-1)/(x^2+14*x+1)^3, {x, 0, nn}], x] (* Georg Fischer, Apr 14 2020 *)
PROG
(Magma)
R<x>:=PowerSeriesRing(Integers(), 30);
[0] cat Coefficients(R!( -x*(1-x)/(1+14*x+x^2)^3 )); // G. C. Greubel, Oct 30 2024
(SageMath)
def A122575_list(prec):
P.<x> = PowerSeriesRing(ZZ, prec)
return P( -x*(1-x)/(1+14*x+x^2)^3 ).list()
A122575_list(30) # G. C. Greubel, Oct 30 2024
CROSSREFS
KEYWORD
sign,easy,changed
AUTHOR
Roger L. Bagula, Sep 17 2006
EXTENSIONS
Edited and extended by N. J. A. Sloane, Jun 27 2009
Offset changed by G. C. Greubel, Oct 30 2024
STATUS
approved