The OEIS is supported by the many generous donors to the OEIS Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A122571 a(1)=a(2)=1, a(n) = 14*a(n-1) - a(n-2). 2
 1, 1, 13, 181, 2521, 35113, 489061, 6811741, 94875313, 1321442641, 18405321661, 256353060613, 3570537526921, 49731172316281, 692665874901013, 9647591076297901, 134373609193269601, 1871582937629476513 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,3 COMMENTS Essentially the same as A001570: 1 followed by A001570. Each term is a sum of two consecutive squares, or a(n) = k^2 + (k+1)^2 for some k. Squares of each term are the hex numbers, or centered hexagonal numbers: a(n) = A001570(n-1) for n > 1. - Alexander Adamchuk, Apr 14 2008 REFERENCES Henry MacKean and Victor Moll, Elliptic Curves, Cambridge University Press, New York, 1997, page 22. LINKS Gareth Jones and David Singerman, Belyi Functions, Hypermaps and Galois Groups, Bull. London Math. Soc., 28 (1996), 561-590. Tanya Khovanova, Recursive Sequences Index entries for linear recurrences with constant coefficients, signature (14,-1). FORMULA a(n) = (1/4)*sqrt(3)*(7-4*sqrt(3))^n - (1/4)*sqrt(3)*(7+4*sqrt(3))^n + (1/2)*(7+4*sqrt(3))^n + (1/2)*(7-4*sqrt(3))^n, with n >= 0. - Paolo P. Lava, Jun 19 2008 G.f.: x*(1-13*x)/(1-14*x+x^2). - Philippe Deléham, Nov 17 2008 a(n+1) = A001570(n). - Ctibor O. Zizka, Feb 26 2010 a(n) = (1/4)*sqrt(2+(2-sqrt(3))^(4*n-2) + (2+sqrt(3))^(4*n-2)). - Gerry Martens, Jun 03 2015 CROSSREFS Cf. A001570 (essentially the same). Sequence in context: A201607 A083576 A189432 * A001570 A239902 A020544 Adjacent sequences:  A122568 A122569 A122570 * A122572 A122573 A122574 KEYWORD nonn,easy AUTHOR Roger L. Bagula, Sep 17 2006 EXTENSIONS Edited by N. J. A. Sloane, Sep 21 2006 and Dec 04 2006 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 2 04:54 EDT 2022. Contains 357191 sequences. (Running on oeis4.)