

A122487


2 together with odd primes p that divide Fibonacci[(p+1)/2].


6



2, 13, 17, 37, 53, 73, 97, 113, 137, 157, 173, 193, 197, 233, 257, 277, 293, 313, 317, 337, 353, 373, 397, 433, 457, 557, 577, 593, 613, 617, 653, 673, 677, 733, 757, 773, 797, 853, 857, 877, 937, 953, 977, 997, 1013, 1033, 1093, 1097, 1117, 1153, 1193, 1213
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

Primes of the form 2x^2+2xy+13y^2. Discriminant = 100.  T. D. Noe, May 02 2008
Primes of the form a^2 + b^2 such that a^2 == b^2 (mod 5).  Thomas Ordowski, May 18 2015


LINKS

Giovanni Resta, Table of n, a(n) for n = 1..1000


FORMULA

Except for 2, the primes are congruent to {13, 17} (mod 20).  T. D. Noe, May 02 2008
2 together with all primes p == {13, 17} (mod 20).  Thomas Ordowski, May 18 2015


MATHEMATICA

Select[Prime[Range[1000]], IntegerQ[Fibonacci[(#1+1)/2]/#1]&]


PROG

(PARI) is(n)=my(k=n%20); (k==13k==17k==2) && isprime(n) \\ Charles R Greathouse IV, May 18 2015


CROSSREFS

Cf. A000045, A033205, A045468, A003631, A053028, A139827.
Sequence in context: A037384 A177964 A174050 * A109181 A175448 A067522
Adjacent sequences: A122484 A122485 A122486 * A122488 A122489 A122490


KEYWORD

nonn,easy


AUTHOR

Alexander Adamchuk, Sep 16 2006


EXTENSIONS

Definition changed by T. D. Noe, May 02 2008


STATUS

approved



