The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A122461 Repetitions of even numbers four times. 3
 0, 0, 0, 0, 2, 2, 2, 2, 4, 4, 4, 4, 6, 6, 6, 6, 8, 8, 8, 8, 10, 10, 10, 10, 12, 12, 12, 12, 14, 14, 14, 14, 16, 16, 16, 16, 18, 18, 18, 18, 20, 20, 20, 20, 22, 22, 22, 22, 24, 24, 24, 24, 26, 26, 26, 26, 28, 28, 28, 28, 30, 30, 30, 30, 32, 32, 32, 32, 34, 34, 34, 34, 36, 36, 36, 36 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,5 COMMENTS Number of roots of P(x) = 1 + x + x^2 + … + x^n in the right half-plane. - Michel Lagneau, Oct 30 2012 LINKS Index entries for linear recurrences with constant coefficients, signature (1,0,0,1,-1). FORMULA a(n) = (Sum_{k=0..n} (k+1)*cos((n-k)*Pi/2))+1/4*(2*cos(n*Pi/2)+1+(-1)^n)-2. - Paolo P. Lava, May 15 2007 a(n) = 2*A002265(n) = 2*A180969(2,n). [Adriano Caroli, Nov 25 2010, corrected by R. J. Mathar, Nov 26 2010] G.f.: 2*x^4/(1-x-x^4+x^5). [Bruno Berselli, Oct 31 2012] a(n) = (-3+(-1)^n+2*i^((n-1)*n)+2*n)/4, where i=sqrt(-1). [Bruno Berselli, Oct 31 2012] a(n) = 2 * floor(n/4). - Wesley Ivan Hurt, Dec 06 2013 a(n) = (2*n-3+2*cos(n*Pi/2)+cos(n*Pi)+2*sin(n*Pi/2))/4. - Wesley Ivan Hurt, Oct 02 2017 MAPLE with(numtheory): for n from 1 to 70 do:it:=0:y:=[fsolve(sum('x^i ', 'i'=0..n-1), x, complex)] : for m from 1 to nops(y) do : if Re(y[m]) > 0 then it:=it+1:else fi:od: printf(`%d, `, it):od: # Michel Lagneau, Oct 31 2012 A122461:=n->2*floor(n/4); seq(A122461(n), n=0..100); # Wesley Ivan Hurt, Dec 06 2013 MATHEMATICA Table[2 Floor[n/4], {n, 0, 100}] (* Wesley Ivan Hurt, Dec 06 2013 *) Table[PadRight[{}, 4, 2n], {n, 0, 20}]//Flatten (* or *) LinearRecurrence[ {1, 0, 0, 1, -1}, {0, 0, 0, 0, 2}, 80] (* Harvey P. Dale, Mar 15 2020 *) CROSSREFS Cf. A002265, A092533, A180969. Sequence in context: A072376 A131883 A113452 * A092533 A092532 A073504 Adjacent sequences:  A122458 A122459 A122460 * A122462 A122463 A122464 KEYWORD nonn,easy AUTHOR Paolo P. Lava and Giorgio Balzarotti, Oct 20 2006 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 4 02:10 EDT 2020. Contains 336201 sequences. (Running on oeis4.)