OFFSET
0,4
FORMULA
a(n) = (1/n!)*Sum_{k=0..n} Stirling1(n,k)*A122418(k).
G.f.: Sum_{n>=0} ((1+x)^(n-1) - 1)^n.
a(n) ~ c * d^n * n! / sqrt(n), where d = A317855 = (1+exp(1/r))*r^2 = 3.161088653865428813830172202588132491726382774188556341627278..., r = 0.8737024332396683304965683047207192982139922672025395099... is the root of the equation exp(1/r)/r + (1+exp(1/r))*LambertW(-exp(-1/r)/r) = 0, and c = 0.08904589343883135100956914504938... . - Vaclav Kotesovec, May 07 2014
MAPLE
A122418 := proc(n) option remember ; add( combinat[stirling2](n, k)*(k-1)^n*k!, k=0..n) ; end: A122419 := proc(n) option remember ; add( combinat[stirling1](n, k)*A122418(k), k=0..n)/n! ; end: for n from 0 to 30 do printf("%d, ", A122419(n)) ; od ; # R. J. Mathar, May 18 2007
MATHEMATICA
nmax=20; CoefficientList[Series[Sum[((1+x)^(n-1)-1)^n, {n, 0, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, May 06 2014 *)
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Vladeta Jovovic, Sep 03 2006
EXTENSIONS
More terms from R. J. Mathar, May 18 2007
STATUS
approved