login
Factorials from an irrationality measure for e, with a(1) = 2.
4

%I #20 Dec 04 2018 12:04:39

%S 2,6,24,120,720,24,40320,120,5040,720,479001600,120,87178291200,40320,

%T 720,5040,6402373705728000,5040,2432902008176640000,720,40320,

%U 479001600,620448401733239439360000,120,39916800,87178291200,3628800,40320

%N Factorials from an irrationality measure for e, with a(1) = 2.

%C If n > 1, then a(n) is the smallest factorial such that |e - m/n| > 1/a(n) for any integer m.

%C a(n) is the second smallest factorial divisible by n.

%H Mohammad K. Azarian, <a href="http://www.m-hikari.com/ijcms/ijcms-2012/21-24-2012/azarianIJCMS21-24-2012.pdf">Euler's Number Via Difference Equations</a>, International Journal of Contemporary Mathematical Sciences, Vol. 7, 2012, No. 22, pp. 1095 - 1102.

%H J. Sondow, <a href="http://www.jstor.org/stable/27642006">A geometric proof that e is irrational and a new measure of its irrationality</a>, Amer. Math. Monthly 113 (2006) 637-641.

%H J. Sondow, <a href="http://arxiv.org/abs/0704.1282">A geometric proof that e is irrational and a new measure of its irrationality</a>, arXiv:0704.1282 [math.HO], 2007-2010.

%H <a href="/index/Fa#factorial">Index entries for sequences related to factorial numbers.</a>

%F a(n) = (A002034(n)+1)! = A122416(n)!.

%e a(6) = (S(6)+1)! = (3+1)! = 24.

%t nmax = 28;

%t Do[m = 1; While[!IntegerQ[m!/n], m++]; a[n] = (m+1)!, {n, 1, nmax}];

%t Array[a, nmax] (* _Jean-François Alcover_, Dec 04 2018 *)

%Y Cf. A001113, A002034, A092495, A122416.

%K nonn

%O 1,1

%A _Jonathan Sondow_, Sep 03 2006