login
A122385
Smallest m such that (n^2 mod m) = (m^2 mod n).
4
1, 2, 2, 2, 4, 5, 5, 3, 3, 8, 9, 6, 10, 11, 4, 4, 14, 6, 16, 10, 8, 18, 19, 5, 5, 22, 9, 12, 11, 8, 26, 6, 6, 29, 6, 6, 14, 33, 26, 20, 36, 16, 37, 22, 12, 40, 41, 7, 7, 10, 45, 26, 47, 18, 21, 15, 38, 22, 52, 27, 54, 55, 8, 8, 58, 59, 60, 34, 39, 12, 19, 12, 65, 66, 15, 29, 69, 70, 71
OFFSET
1,2
COMMENTS
A122388(n) = n^2 mod a(n) = a(n)^2 mod n;
A122386(n) = a(a(n));
a(A122387(n)) = n, a(m) <> n for m < A122387(n).
EXAMPLE
10^2 mod 1 = 0 <> 1^2 mod 10 = 1,
10^2 mod 2 = 0 <> 2^2 mod 10 = 4,
10^2 mod 3 = 1 <> 3^2 mod 10 = 9,
10^2 mod 4 = 0 <> 4^2 mod 10 = 6,
10^2 mod 5 = 0 <> 5^2 mod 10 = 5,
10^2 mod 6 = 4 <> 6^2 mod 10 = 6,
10^2 mod 7 = 2 <> 7^2 mod 10 = 9,
10^2 mod 8 = 4 = 8^2 mod 10, therefore a(10) = 8.
MATHEMATICA
s={}; Do[m=0; Until[Mod[n^2, m]==Mod[m^2, n], m++]; AppendTo[s, m] , {n, 79}]; s (* James C. McMahon, Oct 27 2024 *)
CROSSREFS
Sequence in context: A240327 A308771 A007495 * A035002 A032578 A351976
KEYWORD
nonn,changed
AUTHOR
Reinhard Zumkeller, Sep 01 2006
STATUS
approved