login
A122276
If b(n-1) + b(n-2) < n then a(n) = 0, otherwise a(n) = 1, where b(i) = A096535(i).
6
1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 1, 1, 1, 0, 1, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 1, 1, 1, 0, 0, 1, 0, 1, 1, 0, 0, 0, 1, 1, 0, 1, 0, 0, 1, 1, 1, 0, 1, 1, 0, 0, 0, 1, 0, 0, 1
OFFSET
2,1
COMMENTS
Conjecture: lim {n -> infinity} x_n / y_n = 1, where x_n is the number of j <= n such that A096535(j) = A096535(j-1) + A096535(j-2) and y_n is the number of j <= n such that A096535(j) = A096535(j-1) + A096535(j-2) - j. Computational support: x_n / y_n = 0.9999917 for n = 10^9.
LINKS
FORMULA
a(n) = floor((A096535(n-1)+A096535(n-2))/n)
MATHEMATICA
f[s_] := f[s] = Append[s, Mod[s[[ -2]] + s[[ -1]], Length[s]]]; t = Nest[f, {1, 1}, 106]; s = {}; Do[AppendTo[s, If[t[[n]] + t[[n + 1]] < n + 1, 0, 1]], {n, 105}]; s (* Robert G. Wilson v Sep 02 2006 *)
PROG
(PARI) {m=107; a=1; b=1; for(n=2, m, d=divrem(a+b, n); print1(d[1], ", "); a=b; b=d[2])}
CROSSREFS
Sequence in context: A089010 A162289 A373139 * A352679 A239199 A265718
KEYWORD
nonn
AUTHOR
Klaus Brockhaus, Aug 29 2006
STATUS
approved