The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A122276 If b(n-1) + b(n-2) < n then a(n) = 0, otherwise a(n) = 1, where b(i) = A096535(i). 6
 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 1, 1, 1, 0, 1, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 1, 1, 1, 0, 0, 1, 0, 1, 1, 0, 0, 0, 1, 1, 0, 1, 0, 0, 1, 1, 1, 0, 1, 1, 0, 0, 0, 1, 0, 0, 1 (list; graph; refs; listen; history; text; internal format)
 OFFSET 2,1 COMMENTS Conjecture: lim {n -> infinity} x_n / y_n = 1, where x_n is the number of j <= n such that A096535(j) = A096535(j-1) + A096535(j-2) and y_n is the number of j <= n such that A096535(j) = A096535(j-1) + A096535(j-2) - j. Computational support: x_n / y_n = 0.9999917 for n = 10^9. LINKS G. C. Greubel, Table of n, a(n) for n = 2..1000 FORMULA a(n) = floor((A096535(n-1)+A096535(n-2))/n) MATHEMATICA f[s_] := f[s] = Append[s, Mod[s[[ -2]] + s[[ -1]], Length[s]]]; t = Nest[f, {1, 1}, 106]; s = {}; Do[AppendTo[s, If[t[[n]] + t[[n + 1]] < n + 1, 0, 1]], {n, 105}]; s (* Robert G. Wilson v Sep 02 2006 *) PROG (PARI) {m=107; a=1; b=1; for(n=2, m, d=divrem(a+b, n); print1(d[1], ", "); a=b; b=d[2])} CROSSREFS Cf. A096535, A122277. Sequence in context: A288711 A089010 A162289 * A239199 A265718 A267463 Adjacent sequences:  A122273 A122274 A122275 * A122277 A122278 A122279 KEYWORD nonn AUTHOR Klaus Brockhaus, Aug 29 2006 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified February 22 05:54 EST 2020. Contains 332116 sequences. (Running on oeis4.)