|
|
|
|
42, 240, 916, 3748, 14960, 62104, 248176, 969304, 3876576, 15962544, 63772488, 248169896, 993554240, 4086635408, 16350541128, 63529835824, 254129143040, 1046249323840, 4184725760584, 16276030608712, 65054467548432, 267635134298624
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
Question: to which Wolfram's class does this simple program belong, class 3 or class 4?
|
|
LINKS
|
Table of n, a(n) for n=1..22.
A. Karttunen, Python program for computing this sequence and the associated image.
A. Karttunen, Terms a(1)-a(768) drawn as binary strings, in Wolframesque fashion.
A. Karttunen, Terms a(1)-a(256) drawn as binary strings, showing details better.
|
|
CROSSREFS
|
A122243 shows the same sequence in binary. Compare to similar Wolframesque plots given in A080070, A122229, A122232, A122235, A122239, A122245.
Sequence in context: A263304 A116004 A221426 * A046655 A299717 A156357
Adjacent sequences: A122239 A122240 A122241 * A122243 A122244 A122245
|
|
KEYWORD
|
nonn,base
|
|
AUTHOR
|
Antti Karttunen, Sep 14 2006
|
|
STATUS
|
approved
|
|
|
|