login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A122152 Primes in A122150[n] = Numerator[ Sum[ (-1)^(k+1) * 1/2^Prime[k], {k,1,n} ] ]. 3

%I

%S 5,19,327235662833,

%T 578175370366880553282134492422436321419543414585625120508329411643068012549226892303,

%U 39731908913255031966162449696446781074231732174358868548789339497630379824042353480418749055951

%N Primes in A122150[n] = Numerator[ Sum[ (-1)^(k+1) * 1/2^Prime[k], {k,1,n} ] ].

%C A122150[n] = Numerator[ Sum[ (-1)^(k+1) * 1/2^Prime[k], {k,1,n} ] ] begins {1,1,5,19,305,1219,19505,78019,1248305,79891519,319566077,20452228927,327235662833,...}. Indices of primes in A122150[n] are listed in A122151[n] = {3,4,13,60,66,75,175,...}.

%F a(n) = A122150[ A122151[n] ].

%t Do[f=Numerator[Sum[(-1)^(k+1)*1/2^Prime[k],{k,1,n}]];If[PrimeQ[f],Print[{n,f}]],{n,1,1000}]

%Y Cf. A122150, A122151, A122153.

%K nonn

%O 1,1

%A _Alexander Adamchuk_, Aug 22 2006

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 18 17:45 EDT 2019. Contains 327178 sequences. (Running on oeis4.)