

A122132


Squarefree numbers multiplied by binary powers.


23



1, 2, 3, 4, 5, 6, 7, 8, 10, 11, 12, 13, 14, 15, 16, 17, 19, 20, 21, 22, 23, 24, 26, 28, 29, 30, 31, 32, 33, 34, 35, 37, 38, 39, 40, 41, 42, 43, 44, 46, 47, 48, 51, 52, 53, 55, 56, 57, 58, 59, 60, 61, 62, 64, 65, 66, 67, 68, 69, 70, 71, 73, 74, 76, 77, 78, 79, 80, 82, 83, 84, 85
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,2


COMMENTS

These numbers are called "oddly squarefree" in Banks and Luca.  Michel Marcus, Mar 14 2016
The asymptotic density of this sequence is 8/Pi^2 (A217739).  Amiram Eldar, Sep 21 2020


LINKS

Reinhard Zumkeller, Table of n, a(n) for n = 1..10000
William D. Banks and Florian Luca, Roughly squarefree values of the Euler and Carmichael functions, Acta Arithmetica, Vol. 120, No. 3 (2005), pp. 211230.


FORMULA

a(n) = A007947(a(n)) * A006519(a(n)) / (2  a(n) mod 2);
A007947(a(n)) = A000265(a(n)) * (2  a(n) mod 2).
A008966(A000265(a(n))) = 1.  Reinhard Zumkeller, Jan 24 2012
A010052(A008477(a(n))) = 1.  Reinhard Zumkeller, Feb 17 2012


MATHEMATICA

Select[Range@ 85, SquareFreeQ[#/2^IntegerExponent[#, 2]] &] (* Michael De Vlieger, Mar 15 2020 *)


PROG

(Haskell)
a122132 n = a122132_list !! (n1)
a122132_list = filter ((== 1) . a008966 . a000265) [1..]
 Reinhard Zumkeller, Jan 24 2012
(PARI) is(n)=issquarefree(n>>valuation(n, 2)); \\ Charles R Greathouse IV, Sep 02 2015


CROSSREFS

Subsequences: A000079, A005117, A007283, A051916, A056911, A029747.
Complement: A038838.
Cf. A217739.
Sequence in context: A043094 A023803 A353511 * A347248 A347243 A325389
Adjacent sequences: A122129 A122130 A122131 * A122133 A122134 A122135


KEYWORD

nonn,easy


AUTHOR

Reinhard Zumkeller, Aug 21 2006


STATUS

approved



