login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A122041 a(n) = 2*a(n-1) - 1 for n>1, a(1)=23. 2
23, 45, 89, 177, 353, 705, 1409, 2817, 5633, 11265, 22529, 45057, 90113, 180225, 360449, 720897, 1441793, 2883585, 5767169, 11534337, 23068673, 46137345, 92274689, 184549377, 369098753, 738197505, 1476395009, 2952790017 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

From a quiz.

LINKS

G. C. Greubel, Table of n, a(n) for n = 1..1000

C. P. Simoes, Teste de Desempenho Mental.

Index entries for linear recurrences with constant coefficients, signature (3,-2).

FORMULA

a(n) = A083683(n). - R. J. Mathar, Aug 02 2008

a(n) = 11*2^n + 1 for n>=1. - Paolo P. Lava, Oct 01 2008

a(n) = 3*a(n-1) - 2*a(n-2), a(1)=23, a(2)=45. - Harvey P. Dale, Dec 13 2012

From G. C. Greubel, Oct 04 2019: (Start)

G.f.: x*(23 - 24*x)/((1-x)*(1-2*x)).

E.g.f.: 11*exp(2*x) + exp(x) - 12. (End)

EXAMPLE

23x2 -1 = 45; 45x2 -1 = 89; 89x2 -1 = 177; 2x177 -1 = 353.

MAPLE

seq(1 + 11*2^n, n=1..30); # G. C. Greubel, Oct 04 2019

MATHEMATICA

NestList[2#-1&, 23, 30] (* or *) LinearRecurrence[{3, -2}, {23, 45}, 30] (* Harvey P. Dale, Dec 13 2012 *)

PROG

(PARI) a(n)=if(n>1, 2*a(n-1)-1, 23); for(n=1, 40, print1(a(n), ", "))

(MAGMA) [1+11*2^n: n in [1..30]]; // G. C. Greubel, Oct 04 2019

(Sage) [1+11*2^n for n in (1..30)] # G. C. Greubel, Oct 04 2019

(GAP) List([1..30], n-> 1 + 11*2^n); # G. C. Greubel, Oct 04 2019

CROSSREFS

Sequence in context: A058545 A161709 A030656 * A266706 A040506 A081329

Adjacent sequences:  A122038 A122039 A122040 * A122042 A122043 A122044

KEYWORD

nonn

AUTHOR

Herman Jamke (hermanjamke(AT)fastmail.fm), Sep 14 2006

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified July 15 00:36 EDT 2020. Contains 335762 sequences. (Running on oeis4.)