login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A122035 Primes p = Prime[m] such that polynomial (1 + Sum[x^Prime[k],{k,1,m}]) factors over the integers. 1
5, 17, 41, 461 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

Corresponding numbers m such that a(n) = Prime[m] are {3,7,13,89,...}. All 4 listed initial terms of a(n) coincide with A007351[n+1].

The polynomial is divisible by x^2+1 if and only if p is a member of A007351. - David Wasserman, May 20 2008

No other terms below 4175. - Max Alekseyev, May 31 2008

LINKS

Table of n, a(n) for n=1..4.

EXAMPLE

a(1) = 5 because Factor[1+x^2+x^3+x^5] = (x+1)*(x^2+1)*(x^2-x+1), but polynomials (1+x^2) and (1+x^2+x^3) do not factor over the integers.

a(2) = 17 because Factor[1+x^2+x^3+x^5+x^7+x^11+x^13+x^17] = (x^2+1)*(x^15-x^13+2x^11-x^9+x^7+x^3+1).

CROSSREFS

Cf. A038691, A007351.

Sequence in context: A111268 A106973 A102264 * A052350 A318826 A239195

Adjacent sequences:  A122032 A122033 A122034 * A122036 A122037 A122038

KEYWORD

more,nonn

AUTHOR

Alexander Adamchuk, Sep 13 2006

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified February 21 03:02 EST 2020. Contains 332086 sequences. (Running on oeis4.)