%I #19 Sep 28 2020 21:46:16
%S 1,2,2,3,3,3,3,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6
%N Largest integer m such that every n-tournament contains a transitive (i.e., acyclic) sub-tournament with at least m vertices.
%D K. B. Reid, Tournaments, in Handbook of Graph Theory; see p. 167.
%D D. J. Wildstrom, Design and serial construction of digraph braids, Journal of Mathematics and the Arts, Volume 9, Issue 1-2, 2015.
%H W. D. Smith, <a href="http://rangevoting.org/PuzzDG.html">Partial Answer to Puzzle #21: Getting rid of cycles in directed graphs</a>
%H D. J. Wildstrom, <a href="http://bridgesmathart.org/2012/cdrom/proceedings/98/paper_98.pdf">Structural Qualities and Serial Construction of Tournament Braids</a>, in Bridges 2012: Mathematics, Music, Art, Architecture, Culture.
%H Yahoo Groups, <a href="http://groups.yahoo.com/group/RangeVoting/">Range Voting</a>
%H Range Voting Yahoo Group, <a href="/A003141/a003141.txt">Introduction</a>. [Cached copy]
%H RangeVoting.org, <a href="https://rangevoting.org/">Group Website</a>.
%Y Cf. A122026.
%K nonn,more
%O 1,2
%A _Warren D. Smith_, Sep 11 2006