login
Expansion of g.f. -x*(5*x^7-20*x^6-2*x^5+54*x^4+7*x^3-20*x^2-8*x-1)/((x^4-x^3-3*x^2+x+1)*(x^4+x^3-3*x^2-x+1)).
0

%I #16 May 15 2022 12:31:51

%S 1,8,27,49,122,241,530,1101,2312,4909,10121,21688,44379,95465,194734,

%T 419573,854746,1842873,3752212,8092229,16472545,35529800,72317547,

%U 155990161,317490482,684846457,1393860866,3006669477,6119400080

%N Expansion of g.f. -x*(5*x^7-20*x^6-2*x^5+54*x^4+7*x^3-20*x^2-8*x-1)/((x^4-x^3-3*x^2+x+1)*(x^4+x^3-3*x^2-x+1)).

%H <a href="/index/Rec">Index entries for linear recurrences with constant coefficients</a>, signature (0,7,0,-13,0,7,0,-1).

%F G.f.: -x*(5*x^7-20*x^6-2*x^5+54*x^4+7*x^3-20*x^2-8*x-1)/((x^4-x^3-3*x^2+x+1)*(x^4+x^3-3*x^2-x+1)). - _Colin Barker_, Nov 02 2012

%t LinearRecurrence[{0,7,0,-13,0,7,0,-1},{1,8,27,49,122,241,530,1101},30] (* _Harvey P. Dale_, Jul 05 2015 *)

%K nonn,less,easy

%O 1,2

%A _Roger L. Bagula_, Sep 11 2006

%E New name using g.f. given by _Colin Barker_ from _Joerg Arndt_, May 15 2022