login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A122007 Expansion of 2*x^2*(1-2*x) / ((3*x-1)*(3*x^2-1)). 1
0, 2, 2, 12, 24, 90, 234, 756, 2160, 6642, 19602, 59292, 176904, 532170, 1593594, 4785156, 14346720, 43053282, 129133602, 387440172, 1162241784, 3486843450, 10460294154, 31381236756, 94143001680, 282430067922, 847288078002, 2541867422652, 7625595890664 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

REFERENCES

"Linear Algebra, Examples and Applications" by Alain M. Robert, World Scientific, 2005, p. 58.

LINKS

Colin Barker, Table of n, a(n) for n = 1..1000

Index entries for linear recurrences with constant coefficients, signature (3,3,-9).

FORMULA

Limit a(n+1)/a(n)= 3 as n-> infinity.

a(n)= 3*a(n-1) +3*a(n-2) -9*a(n-3) = 3^(n-2) + (-1)^n*A108411(n-2), n>=2.

From Colin Barker, Sep 23 2016: (Start)

a(n) = 3^(n/2-1)+3^(n-2) for n>1 and even.

a(n) = 3^(n-2)-3^((n-3)/2) for n>1 and odd.

(End)

MATHEMATICA

M = {{0, 1, 2}, {1, 2, 0}, {2, 0, 1}} v[1] = {1, 0, 0} v[n_] := v[n] = M.v[n - 1] a1 = Table[v[n][[3]], {n, 1, 50}]

PROG

(PARI) concat(0, Vec(2*x^2*(1-2*x)/((3*x-1)*(3*x^2-1)) + O(x^40))) \\ Colin Barker, Sep 23 2016

CROSSREFS

Sequence in context: A140431 A092900 A164961 * A137782 A131384 A052612

Adjacent sequences:  A122004 A122005 A122006 * A122008 A122009 A122010

KEYWORD

nonn,easy

AUTHOR

Roger L. Bagula and Gary W. Adamson, Sep 11 2006

EXTENSIONS

Definition replaced with generating function by the Assoc. Eds. of the OEIS, Mar 27 2010

A-number in formula corrected - R. J. Mathar, Mar 30 2010

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified March 27 12:35 EDT 2017. Contains 284176 sequences.