login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A122000 ((2^n - 1)^(2^n - 1) + 1) / 2^n = A014566[2^n - 1] / 2^n = A081216[2^n - 1]. 3
1, 7, 102943, 27368368148803711, 533411691585101123706582594658103586126397951, 3566766192921360077810945505268211287512797261288920841093043641769808083046939618603793791988232043305924036607 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

A014566[n] = n^n + 1 is Sierpinski Number of the First Kind. A014566[2^n - 1] is divisible by 2^n. a(n) is a subset of A081216[n] = (n^n-(-1)^n)/(n+1).

2^p - 1 divides a(p-1) for prime p>2. Corresponding quotients are a(p-1) / (2^p - 1) = {1, 882850585445281, 28084773172609134470952326813135521948919663474715912134590894817085103016117634792155856629828598766188378241, ...}, where p = Prime[n] for n>1. - Alexander Adamchuk, Jan 22 2007

LINKS

Table of n, a(n) for n=1..6.

Eric Weisstein's World of Mathematics, Sierpinski Number of the First Kind.

FORMULA

a(n) = ((2^n - 1)^(2^n - 1) + 1) / 2^n. a(n) = A014566[2^n - 1] / 2^n. a(n) = A081216[2^n - 1]. a(n) = A056009[2^n - 1].

MATHEMATICA

Table[((2^n-1)^(2^n-1)+1)/2^n, {n, 1, 7}]

CROSSREFS

Cf. A014566, A081216, A056009.

Sequence in context: A110719 A158816 A173839 * A291906 A090769 A013842

Adjacent sequences:  A121997 A121998 A121999 * A122001 A122002 A122003

KEYWORD

nonn

AUTHOR

Alexander Adamchuk, Sep 11 2006

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified August 20 08:50 EDT 2018. Contains 313914 sequences. (Running on oeis4.)