login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Please make a donation to keep the OEIS running. In 2017 we replaced the server with a faster one, added 20000 new sequences, and reached 7000 citations (often saying "discovered thanks to the OEIS").
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A121991 a(n) = 3*a(n-1) - a(n-2) - a(n-3) + 12. 1
0, 1, 13, 50, 148, 393, 993, 2450, 5976, 14497, 35077, 84770, 204748, 494409, 1193721, 2882018, 6957936, 16798081, 40554301, 97906898, 236368324, 570643785, 1377656145, 3325956338, 8029569096, 19385094817 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

LINKS

G. C. Greubel, Table of n, a(n) for n = 0..1000

Index entries for linear recurrences with constant coefficients, signature (4, -4, 0, 1).

FORMULA

a(n) = ((11 - 7*sqrt(2))*(1 - sqrt(2))^n + (1 + sqrt(2))^n*(11 + 7*sqrt(2)) - 24*n - 22)/4 .

O.g.f.: -x(1+9x+2x^2)/((1-x)^2*(x^2+2x-1)) . - R. J. Mathar, Aug 22 2008

a(n) = -6(n+1)+(1+11*A000129(n+1)+3*A000129(n))/2. - R. J. Mathar, Aug 22 2008

E.g.f.: (1/2)*(11*cosh(sqrt(2)*x) + 7*sqrt(2)*sinh(sqrt(2)*x) - (12*x + 11))*exp(x). - G. C. Greubel, Sep 14 2017

MATHEMATICA

RecurrenceTable[{a[n] == 3*a[n - 1] - a[n - 2] - a[n - 3] + 12, a[0] == 0, a[1] == 1, a[2] == 13}, a, {n, 0, 50}] (* or *) LinearRecurrence[{4, -4, 0, 1}, {0, 1, 13, 50}, 50] (* G. C. Greubel, Sep 14 2017 *)

PROG

(PARI) x='x+O('x^50); concat([0], Vec(-x(1+9x+2x^2)/((1-x)^2*(x^2+2x-1))) ) \\ G. C. Greubel, Sep 14 2017

CROSSREFS

Cf. A003215, A005891.

Sequence in context: A231947 A209995 A050410 * A121990 A050491 A022283

Adjacent sequences:  A121988 A121989 A121990 * A121992 A121993 A121994

KEYWORD

nonn,easy

AUTHOR

Roger L. Bagula, Sep 10 2006

EXTENSIONS

Edited by N. J. A. Sloane, Aug 24 2008, Dec 30 2008

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 10 01:51 EST 2018. Contains 318032 sequences. (Running on oeis4.)