OFFSET
1,3
COMMENTS
a(n) is a component of the n-th partial product of 2 X 2 matrices with rows (0,1), (1, 1 + A130196(j)), j>=1.
The linear recurrence shows that these are three interleaved sequences (0,7,182,...), (1,23,599,...) and (2,53,1380,...) obeying simple recurrences of the form b(n) = 26*b(n-1) + b(n-2).
LINKS
G. C. Greubel, Table of n, a(n) for n = 1..1000
Index entries for linear recurrences with constant coefficients, signature (0,0,26,0,0,1).
MAPLE
seq(coeff(series(x^2*(1+2*x+7*x^2-3*x^3+x^4)/(1-26*x^3-x^6), x, n+1), x, n), n = 1..30); # G. C. Greubel, Oct 05 2019
MATHEMATICA
M[n_] := {{0, 1}, {1, 1+Mod[n^2-n-1, 3]} }; v[1] = {0, 1}; v[n_] := v[n] = M[n].v[n-1]; Table[v[n][[1]], {n, 30}]
Rest@CoefficientList[Series[x^2*(1+2*x+7*x^2-3*x^3+x^4)/(1-26*x^3-x^6), {x, 0, 30}], x] (* G. C. Greubel, Oct 05 2019 *)
PROG
(PARI) my(x='x+O('x^30)); concat([0], Vec(x^2*(1+2*x+7*x^2-3*x^3 +x^4)/( 1-26*x^3-x^6))) \\ G. C. Greubel, Oct 05 2019
(Magma) I:=[0, 1, 2, 7, 23, 53]; [n le 6 select I[n] else 26*Self(n-3) +Self(n-6): n in [1..30]]; // G. C. Greubel, Oct 05 2019
(Sage)
def A121963_list(prec):
P.<x> = PowerSeriesRing(ZZ, prec)
return P( x^2*(1+2*x+7*x^2-3*x^3+x^4)/(1-26*x^3-x^6) ).list()
a=A121963_list(30); a[1:] # G. C. Greubel, Oct 05 2019
(GAP) a:=[1, 2, 9];; for n in [7..30] do a[n]:=26*a[n-3]+a[n-6]; od; a; # G. C. Greubel, Oct 05 2019
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Roger L. Bagula, Sep 02 2006
STATUS
approved