

A121919


Least m such that partition number of m modulo m (=A093952(m)) is n.


1



1, 4, 5, 9, 74, 6, 8, 16, 17, 14, 13, 15, 22, 23, 1402, 19, 41, 69, 26, 232, 61, 617, 28, 38, 30, 205, 50, 196, 65, 32, 175, 56, 96, 381, 45, 140, 57, 104, 59, 51, 119, 795, 262, 117, 78, 88, 86, 60, 106, 812, 113, 63, 81, 90, 229, 72, 66, 209, 71, 68, 352, 178, 64, 354
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,2


LINKS

Max Alekseyev, Table of n, a(n) for n = 0..10395
Robert G. Wilson v and Max Alekseyev, Table of n, a(n) for n = 0..100000, with unknown terms marked by 1 (contains values below 10^8).


EXAMPLE

a(3)=9 because partition number of 9 is 30 == 3 modulo 9,
a(5)=74 because partition number of 74 is 7089500 == 5 modulo 74, etc.


MATHEMATICA

t = Table[0, {10000}]; k = 1; While[k < 475000, a = Mod[ PartitionsP@k, k]; If[a < 10001 && t[[a]] == 0, t[[a]] = k; Print[{a, k}]]; k++ ]; t (* Robert G. Wilson v, Jul 16 2009 *)


CROSSREFS

Cf. A000041, A093952.
Sequence in context: A279919 A041467 A180436 * A041627 A132811 A042179
Adjacent sequences: A121916 A121917 A121918 * A121920 A121921 A121922


KEYWORD

nonn


AUTHOR

Zak Seidov, Sep 02 2006


EXTENSIONS

bfile extended by Max Alekseyev, Jun 13 2011, May 19 2014


STATUS

approved



