login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A121887 a(n) = (n^5 - 133*n^4 + 6729*n^3 - 158379*n^2 + 1720294*n - 6823316)/4. 4
-1705829, -1313701, -991127, -729173, -519643, -355049, -228581, -134077, -65993, -19373, 10181, 26539, 33073, 32687, 27847, 20611, 12659, 5323, -383, -3733, -4259, -1721, 3923, 12547, 23887, 37571, 53149, 70123, 87977, 106207, 124351, 142019, 158923, 174907, 189977, 204331, 218389 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,1

COMMENTS

Prime generating polynomial found by Shyam Sunder Gupta. The first 57 values (n=0..56) are primes.

In fact, this polynomial was first found by F. Dress and B. Landreau in 2002 and not by Gupta. See, e.g., Ribenboim's book, page 148. - Hugo Pfoertner, Dec 12 2019

REFERENCES

Paulo Ribenboim, The Little Book of Bigger Primes, Second Edition, Springer-Verlag New York, 2004.

LINKS

G. C. Greubel, Table of n, a(n) for n = 0..1000

Ed Pegg Jr., Prime generating polynomial, July 17, 2006.

Eric Weisstein's World of Mathematics, Prime-Generating Polynomial.

Index entries for linear recurrences with constant coefficients, signature (6,-15,20,-15,6,-1).

FORMULA

G.f.: (-1705829 + 8921273*x - 18696356*x^2 + 19628654*x^3 - 10324925*x^4 + 2177213*x^5)/(1-x)^6. - R. J. Mathar, Sep 13 2011

E.g.f.: (-6823316 + 1568512 x - 139108 x^2 + 5956 x^3 - 123 x^4 + x^5)*exp(x)/4. - G. C. Greubel, Oct 07 2019

MAPLE

seq((n^5 -133*n^4 +6729*n^3 -158379*n^2 +1720294*n -6823316)/4, n=0..35); # G. C. Greubel, Oct 07 2019

MATHEMATICA

Table[(n^5 -133*n^4 +6729*n^3 -158379*n^2 +1720294*n -6823316)/4, {n, 0, 35}]

PROG

(PARI) vector(35, n, my(m=n-1); (m^5 -133*m^4 +6729*m^3 -158379*m^2 +1720294*m -6823316)/4) \\ G. C. Greubel, Oct 07 2019

(MAGMA) [(n^5 -133*n^4 +6729*n^3 -158379*n^2 +1720294*n -6823316)/4: n in [0..35]]; // G. C. Greubel, Oct 07 2019

(Sage) [(n^5 -133*n^4 +6729*n^3 -158379*n^2 +1720294*n -6823316)/4 for n in (0..35)] # G. C. Greubel, Oct 07 2019

(GAP) List([0..35], n-> (n^5 -133*n^4 +6729*n^3 -158379*n^2 +1720294*n -6823316)/4); # G. C. Greubel, Oct 07 2019

CROSSREFS

Cf. A330363 for a polynomial improving the record to 58 consecutive primes.

Sequence in context: A254241 A172792 A272710 * A237033 A234341 A207796

Adjacent sequences:  A121884 A121885 A121886 * A121888 A121889 A121890

KEYWORD

sign,easy

AUTHOR

Roger L. Bagula, Aug 31 2006

EXTENSIONS

Edited by N. J. A. Sloane, Sep 05 2006

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified January 25 18:03 EST 2021. Contains 340419 sequences. (Running on oeis4.)