login
This site is supported by donations to The OEIS Foundation.

 

Logo

Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing.
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A121887 a(n) = (n^5 - 133*n^4 + 6729*n^3 - 158379*n^2 + 1720294*n - 6823316)/4. 3
-1705829, -1313701, -991127, -729173, -519643, -355049, -228581, -134077, -65993, -19373, 10181, 26539, 33073, 32687, 27847, 20611, 12659, 5323, -383, -3733, -4259, -1721, 3923, 12547, 23887, 37571, 53149, 70123, 87977, 106207, 124351, 142019, 158923, 174907, 189977, 204331, 218389 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,1

COMMENTS

Prime generating polynomial found by Shyam Sunder Gupta. The first 57 values (n=0..56) are primes.

LINKS

G. C. Greubel, Table of n, a(n) for n = 0..1000

Ed Pegg Jr., Prime generating polynomial

Eric Weisstein's World of Mathematics, Prime-Generating Polynomial.

Index entries for linear recurrences with constant coefficients, signature (6,-15,20,-15,6,-1).

FORMULA

G.f.: (-1705829 + 8921273*x - 18696356*x^2 + 19628654*x^3 - 10324925*x^4 + 2177213*x^5)/(1-x)^6. - R. J. Mathar, Sep 13 2011

E.g.f.: (-6823316 + 1568512 x - 139108 x^2 + 5956 x^3 - 123 x^4 + x^5)*exp(x)/4. - G. C. Greubel, Oct 07 2019

MAPLE

seq((n^5 -133*n^4 +6729*n^3 -158379*n^2 +1720294*n -6823316)/4, n=0..35); # G. C. Greubel, Oct 07 2019

MATHEMATICA

Table[(n^5 -133*n^4 +6729*n^3 -158379*n^2 +1720294*n -6823316)/4, {n, 0, 35}]

PROG

(PARI) vector(35, n, my(m=n-1); (m^5 -133*m^4 +6729*m^3 -158379*m^2 +1720294*m -6823316)/4) \\ G. C. Greubel, Oct 07 2019

(MAGMA) [(n^5 -133*n^4 +6729*n^3 -158379*n^2 +1720294*n -6823316)/4: n in [0..35]]; // G. C. Greubel, Oct 07 2019

(Sage) [(n^5 -133*n^4 +6729*n^3 -158379*n^2 +1720294*n -6823316)/4 for n in (0..35)] # G. C. Greubel, Oct 07 2019

(GAP) List([0..35], n-> (n^5 -133*n^4 +6729*n^3 -158379*n^2 +1720294*n -6823316)/4); # G. C. Greubel, Oct 07 2019

CROSSREFS

Sequence in context: A254241 A172792 A272710 * A237033 A234341 A207796

Adjacent sequences:  A121884 A121885 A121886 * A121888 A121889 A121890

KEYWORD

sign,easy

AUTHOR

Roger L. Bagula, Aug 31 2006

EXTENSIONS

Edited by N. J. A. Sloane, Sep 05 2006

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 7 08:15 EST 2019. Contains 329840 sequences. (Running on oeis4.)