login
a(n) = 2^n - A122536(n).
7

%I #23 Aug 26 2019 02:17:35

%S 0,2,4,10,20,44,88,182,364,738,1476,2972,5944,11924,23848,47768,95536,

%T 191214,382428,765136,1530272,3061104,6122208,12245530,24491060,

%U 48984342,97968684,195941804,391883608,783776080,1567552160,3135122038,6270244076

%N a(n) = 2^n - A122536(n).

%C Number of binary sequences of length n with curling number > 1. See A122536 for much more information.

%H Robert Price, <a href="/A121880/b121880.txt">Table of n, a(n) for n = 1..200</a>

%H B. Chaffin, J. P. Linderman, N. J. A. Sloane and Allan Wilks, <a href="http://arxiv.org/abs/1212.6102">On Curling Numbers of Integer Sequences</a>, arXiv:1212.6102 [math.CO], 2012-2013.

%H B. Chaffin, J. P. Linderman, N. J. A. Sloane and Allan Wilks, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL16/Sloane/sloane3.html">On Curling Numbers of Integer Sequences</a>, Journal of Integer Sequences, Vol. 16 (2013), Article 13.4.3.

%H Daniel Gabric, Jeffrey Shallit, <a href="https://arxiv.org/abs/1906.03689">Borders, Palindrome Prefixes, and Square Prefixes</a>, arXiv:1906.03689 [cs.DM], 2019.

%H <a href="/index/Cu#curling_numbers">Index entries for sequences related to curling numbers</a>

%Y Cf. A122536. Similar to but different from A094536.

%Y See also A093370.

%K nonn

%O 1,2

%A _N. J. A. Sloane_, Sep 21 2006