login
Triangular array read by rows: see Comments for definition.
1

%I #7 Oct 12 2012 14:55:29

%S 1,2,3,3,7,13,5,17,43,89,8,41,142,377,836,13,99,469,1597,4341,10063,

%T 21,239,1549,6765,22541,62011,148149,34,577,5116,28657,117046,382129,

%U 1057792,2581921,55,1393,16897,121393,607771,2354785,7552693,20973217

%N Triangular array read by rows: see Comments for definition.

%C Form the square array in which row m satisfies r(0) = r(1) = 1; r(n) = m*r(n-1) + r(n-2):

%C 1 1 2 3 5 8 13 21 ...

%C 1 1 3 7 17 41 99 ...

%C 1 1 4 13 43 142 ...

%C 1 1 5 21 89 377 ...

%C ...

%C Now form a triangle by taking the first k terms of column k:

%C 1

%C 2, 3

%C 3, 7, 13

%C 5, 17, 43, 89

%C 8, 41, 142, 377, 836

%C ...

%t f[n_Integer] = Module[{a}, a[n] /. RSolve[{a[n] == m*a[n - 1] + a[n - 2], a[0] == 1, a[1] == 1}, a[n], n][[1]] // FullSimplify] a = Table[Table[Rationalize[N[f[n], 100], 0], {m, 1, n}], {n, 1, 10}] Flatten[a]

%Y Cf. A135597.

%K nonn,tabl

%O 1,2

%A _Roger L. Bagula_ and _Gary W. Adamson_, Sep 09 2006

%E Edited by _N. J. A. Sloane_, Mar 02 2008