login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A121868 Let A(0) = 1, B(0) = 0; A(n+1) = Sum_{k=0..n} binomial(n,k)*B(k), B(n+1) = Sum_{k=0..n} -binomial(n,k)*A(k); entry gives B sequence (cf. A121867). 13
0, -1, -1, 0, 5, 23, 74, 161, -57, -3466, -27361, -155397, -687688, -1888525, 4974059, 134695952, 1400820897, 11055147275, 70658948426, 327448854237, 223871274083, -19116044475298, -314203665206509, -3562429698724513, -33024521386113840, -250403183401213513 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,5

COMMENTS

Stirling transform of (I^(n+1)+(-I)^(n+1))/2 = (0,-1,0,1,..) repeated.

LINKS

Alois P. Heinz, Table of n, a(n) for n = 0..250

A. Fekete and G. Martin, Problem 10791: Squared Series Yielding Integers, Amer. Math. Monthly, 108 (No. 2, 2001), 177-178.

V. V. Kruchinin, Composition of ordinary generating functions, arXiv:1009.2565 [math.CO], 2010.

FORMULA

This sequence and its companion A121867 are related to the pair of constants cos(1) + sin(1) and cos(1) - sin(1) and may be viewed as generalizations of the Uppuluri-Carpenter numbers (complementary Bell numbers) A000587. Define E_2(k) = sum {n = 0.. inf} (-1)^floor(n/2)*n^k/n! for k = 0,1,2,... . Then E_2(0) = cos(1) + sin(1) and E_2(1) = cos(1) - sin(1). Furthermore, E_2(k) is an integral linear combination of E_2(0) and E_2(1) (a Dobinski-type relation). For example, E_2(2) = - E_2(0) + E_2(1), E_2(3) = -3*E_2(0) and E_2(4) = - 6*E_2(0) - 5*E_2(1). More examples are given below. The precise result is E_2(k) = A121867(k) * E_2(0) - A121868(k) * E_2(1). For similar results see A143628. The decimal expansions of E_2(0) and E_2(1) are given in A143623 and A143624 respectively. - Peter Bala, Aug 28 2008

E.g.f.: A(x) = -sin(exp(x)-1).

a(n) = Sum_{k=0..floor(n/2)} stirling2(n,2*k+1)*(-1)^(k+1). - Vladimir Kruchinin, Jan 26 2011

EXAMPLE

From Peter Bala, Aug 28 2008: (Start)

E_2(k) as a linear combination

of E_2(i), i = 0..1.

============================

..E_2(k)..|...E_2(0)..E_2(1)

============================

..E_2(2)..|....-1.......1...

..E_2(3)..|....-3.......0...

..E_2(4)..|....-6......-5...

..E_2(5)..|....-5.....-23...

..E_2(6)..|....33.....-74...

..E_2(7)..|...266....-161...

..E_2(8)..|..1309......57...

..E_2(9)..|..4905....3466...

(End)

MAPLE

# Maple code for A024430, A024429, A121867, A121868.

M:=30; a:=array(0..100); b:=array(0..100); c:=array(0..100); d:=array(0..100); a[0]:=1; b[0]:=0; c[0]:=1; d[0]:=0;

for n from 1 to M do a[n]:=add(binomial(n-1, k)*b[k], k=0..n-1); b[n]:=add(binomial(n-1, k)*a[k], k=0..n-1); c[n]:=add(binomial(n-1, k)*d[k], k=0..n-1); d[n]:=-add(binomial(n-1, k)*c[k], k=0..n-1); od: ta:=[seq(a[n], n=0..M)]; tb:=[seq(b[n], n=0..M)]; tc:=[seq(c[n], n=0..M)]; td:=[seq(d[n], n=0..M)];

# Code based on Stirling transform:

stirtr:= proc(p) proc(n) option remember;

            add(p(k) *Stirling2(n, k), k=0..n) end

         end:

a:= stirtr(n-> (I^(n+1) + (-I)^(n+1))/2):

seq(a(n), n=0..30);  # Alois P. Heinz, Jan 29 2011

MATHEMATICA

stirtr[p_] := Module[{f}, f[n_] := f[n] = Sum[p[k]*StirlingS2[n, k], {k, 0, n}]; f]; a = stirtr[(I^(#+1)+(-I)^(#+1))/2&]; Table[a[n], {n, 0, 30}] (* Jean-Fran├žois Alcover, Mar 11 2014, after Alois P. Heinz *)

Table[Im[BellB[n, -I]], {n, 0, 25}] (* Vladimir Reshetnikov, Oct 22 2015 *)

CROSSREFS

Cf. A121867, A024430, A024429.

Cf. A000587, A143623, A143624, A143628, A143631. - Peter Bala, Aug 28 2008

Sequence in context: A138905 A125955 A103478 * A111584 A225266 A293426

Adjacent sequences:  A121865 A121866 A121867 * A121869 A121870 A121871

KEYWORD

sign

AUTHOR

N. J. A. Sloane, Sep 05 2006

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 19 17:48 EDT 2019. Contains 323395 sequences. (Running on oeis4.)