login
A121814
A 3 X 3 determinant based recursion.
1
0, 1, 1, -2, 0, 7, -335, 37595032, -53136308105121335327856, 150028625138472351236334849506272469590820016866180023237071134409583
OFFSET
1,4
COMMENTS
For n >= 3, a(n) is the determinant of the matrix
[a(n-3),a(n-1),a(n-2)]
[a(n-1),a(n-2),a(n-3)]
[a(n-2),a(n-3),a(n-1)]. - Robert Israel, Nov 13 2017
LINKS
FORMULA
a(n) = 3*a(n-1)*a(n-2)*a(n-3)-a(n-1)^3-a(n-2)^3-a(n-3)^3 for n >= 4.
MAPLE
A[1]:= 0: A[2]:= 1: A[3]:= 1:
for n from 4 to 12 do
A[n]:= LinearAlgebra:-Determinant(<<A[n-3], A[n-1], A[n-2]>|<A[n-1], A[n-2], A[n-3]>|<A[n-2], A[n-3], A[n-1]>>)
od:
seq(A[i], i=1..12); # Robert Israel, Nov 13 2017
MATHEMATICA
M = {{a[n - 3], a[n - 1], a[n - 2]}, {a[n - 1], a[n - 2], a[n - 3]}, {a[n - 2], a[n - 3], a[n - 1]}}; a[0] = 0; a[1] = 1; a[2] = 1; a[n_] := a[n] = Det[M] b = Table[a[n], {n, 0, 10}]
CROSSREFS
Sequence in context: A016631 A164269 A293265 * A195298 A010581 A356920
KEYWORD
sign
AUTHOR
Roger L. Bagula, Aug 30 2006
EXTENSIONS
Edited by Robert Israel, Nov 13 2017
STATUS
approved