OFFSET
1,3
LINKS
Elena Barcucci, Sara Brunetti, and Francesco Del Ristoro, Succession rules and deco polyominoes, Theoret. Informatics Appl., 34, 2000, 1-14.
Elena Barcucci, Alberto Del Lungo, and Renzo Pinzani, "Deco" polyominoes, permutations and random generation, Theoretical Computer Science, 159, 1996, 29-42.
FORMULA
a(n) = Sum_{k=0..n-1} k*A121748(n,k).
Recurrence relation: a(n) = n*a(n-1)+d(n-1)+(n-1)!*floor((n-1)/2) for n>=2, a(1)=0, where d(1)=1, d(2)=0, d(2n)=3!+5!+...+(2n-1)!, d(2n+1)=-d(2n).
Conjecture D-finite with recurrence a(n) +(-n-2)*a(n-1) +(-n^2+4*n-2)*a(n-2) +(n^3-3*n^2-4*n+11)*a(n-3) -(n-1)*(n^2-11*n+26)*a(n-4) +(-n^3+5*n^2+7*n-43)*a(n-5) +(n-3)*(n-5)^2*a(n-6)=0. - R. J. Mathar, Jul 26 2022
EXAMPLE
a(2)=1 because the deco polyominoes of height 2 are the vertical and horizontal dominoes, having 1 and 0 columns of even length, respectively.
MAPLE
d:=proc(n) if n=1 then 1 elif n=2 then 0 elif n mod 2 = 0 then add((2*j-1)!, j=2..n/2) else -d(n-1) fi end: a[1]:=0: for n from 2 to 22 do a[n]:=n*a[n-1]+d(n-1)+(n-1)!*floor((n-1)/2) od: seq(a[n], n=1..22);
MATHEMATICA
d[n_] := Which[n == 1, 1, n == 2, 0, EvenQ[n], Sum[(2j - 1)!, {j, 2, n/2}], True, -d[n-1]];
a[n_] := a[n] = If[n == 1, 0, n*a[n-1] + d[n-1] + (n-1)!*Floor[(n-1)/2]];
Table[a[n], {n, 1, 22}] (* Jean-François Alcover, Aug 20 2024, after Maple program *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Emeric Deutsch, Aug 20 2006
STATUS
approved