login
A121749
Number of deco polyominoes of height n, consisting only of columns of odd length. A deco polyomino is a directed column-convex polyomino in which the height, measured along the diagonal, is attained only in the last column.
2
1, 1, 2, 6, 16, 66, 246, 1248, 5976, 36120, 210480, 1479600, 10140480, 81340560, 640367280, 5773662720, 51312240000, 513773124480, 5085768280320, 55995414048000, 610811823283200, 7334879610643200, 87402605773190400
OFFSET
1,3
COMMENTS
a(n)=A121748(n,0).
REFERENCES
E. Barcucci, S. Brunetti and F. Del Ristoro, Succession rules and deco polyominoes, Theoret. Informatics Appl., 34, 2000, 1-14.
E. Barcucci, A. Del Lungo and R. Pinzani, "Deco" polyominoes, permutations and random generation, Theoretical Computer Science, 159, 1996, 29-42.
FORMULA
Recurrence relation: a(n)=floor(n/2)(a(n-1)+a(n-2)) for n>=3, a(1)=a(2)=1.
D-finite with recurrence +4*a(n) -2*a(n-1) +(-n^2-n+4)*a(n-2) +2*(-n+2)*a(n-3) +(n-2)*(n-3)*a(n-4)=0. - R. J. Mathar, Jul 26 2022
EXAMPLE
a(2)=1 because the deco polyominoes of height 2 are the vertical and horizontal dominoes and only the horizontal one consists only of columns of odd length.
MAPLE
a[1]:=1: a[2]:=1: for n from 3 to 26 do a[n]:=floor(n/2)*(a[n-1]+a[n-2]) od: seq(a[n], n=1..26);
CROSSREFS
Sequence in context: A150032 A373452 A283420 * A009386 A009605 A009681
KEYWORD
nonn
AUTHOR
Emeric Deutsch, Aug 20 2006
STATUS
approved