This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A121725 Generalized central coefficients for k=3. 5
 1, 1, 10, 19, 190, 442, 4420, 11395, 113950, 312814, 3128140, 8960878, 89608780, 264735892, 2647358920, 8006545891, 80065458910, 246643289830, 2466432898300, 7711583225338, 77115832253380, 244082045341036, 2440820453410360, 7805301802531534 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS Hankel transform of a(n) is 9^binomial(n+1,2). Case k=3 of T(n,k)=2*k^2*(2k)^n*INT(x^n*sqrt(1-x^2)/(1+k^2-2kx),x,-1,1)/pi. T(n,k) has Hankel transform (k^2)^binomial(n+1,2). k=1 corresponds to C(n,floor(n/2)). Expansion of c(9x^2)/(1-xc(9x^2)), where c(x) is the g.f. of A000108 . Reversion of x(1+x)/(1+2x+10x^2). - Philippe Deléham, Nov 09 2007 LINKS Vincenzo Librandi, Table of n, a(n) for n = 0..200 FORMULA a(n) = 18*6^n*INT(x^n*sqrt(1-x^2)/(10-6x),x,-1,1)/Pi. a(n) = Sum_{k, 0<=k<=floor(n/2)} A009766(n-k,k)*3^2k . - Philippe Deléham, Aug 18 2006 a(n) = Sum_{k, 0<=k<=n}A120730(n,k)*9^(n-k). - Philippe Deléham, Nov 09 2007 Conjecture: (n+1)*a(n) +10*(-n-1)*a(n-1) +36*(-n+2)*a(n-2) +360*(n-2)*a(n-3)=0. - R. J. Mathar, Nov 26 2012 a(n) ~ (4+(-1)^n) * 2^(n-7/2) * 3^(n+2) / (n^(3/2) * sqrt(Pi)). - Vaclav Kotesovec, Feb 13 2014 MATHEMATICA CoefficientList[Series[(1-Sqrt[1-4*9*x^2])/(2*9*x^2)/(1-x*(1-Sqrt[1-4*9*x^2])/(2*9*x^2)), {x, 0, 20}], x] (* Vaclav Kotesovec, Feb 13 2014 *) CROSSREFS Sequence in context: A299575 A073222 A110463 * A110368 A006050 A045646 Adjacent sequences:  A121722 A121723 A121724 * A121726 A121727 A121728 KEYWORD easy,nonn AUTHOR Paul Barry, Aug 17 2006 EXTENSIONS More terms from Vincenzo Librandi, Feb 15 2014 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 17 23:33 EDT 2019. Contains 328135 sequences. (Running on oeis4.)