login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A121710 The smallest prime of the form (prime(n+1)^k + prime(n+2)^k)/2 for positive integer k. 2
17, 37, 8521, 21601, 229, 106921, 205081, 289278699121, 815401, 1398841, 8274567108488469403564696641244659777685186165444353190460129729940809291805549571887038803603334751361, 3122281, 2029 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

These numbers are all of the form 4n+1.

k needs to be a power of two. The sequence of the associated k is 2, 2, 4, 4, 2, 4, 4, 8, 4, 4, 64, 4, 2, 0, 32, 4, 4, 4, 0, 0, 0, 8, 0, 0, 8, 4, 8, 4, 2, 4, 0, 32, 0, 2, 8, 2, ... where 0 is inserted if a(n) does not appear to exist. - Robert G. Wilson v, Aug 02 2018

It seems likely that a(14) does not exist. No k <= 2^15 works. - Don Reble and Robert Israel, Aug 02 2018

REFERENCES

Zak Seidov query about (3^n + 5^n)/2 is prime in seqfan 9/10/06

LINKS

Table of n, a(n) for n=1..13.

MAPLE

A121710 := proc(n)

    local p1, p2, k, a ;

    p1 := ithprime(n+1) ;

    p2 := nextprime(p1) ;

    for k from 1 do

        a := (p1^k+p2^k)/2 ;

        if type(a, 'integer') and isprime(a) then

            return a;

        end if;

    end do:

end proc:

for n from 1 do

    printf("%d %d\n", n, A121710(n)) ;

end do: # R. J. Mathar, Aug 02 2018

PROG

(PARI) g(n, a, b) = for(x=1, n, y=(a^x+b^x)/2; if(ispseudoprime(y), print(a", "b", "x", "y)))

CROSSREFS

Sequence in context: A093343 A153685 A208292 * A051779 A139579 A293206

Adjacent sequences:  A121707 A121708 A121709 * A121711 A121712 A121713

KEYWORD

nonn

AUTHOR

Cino Hilliard, Sep 10 2006

EXTENSIONS

Name and Data corrected by Robert Israel, Aug 02 2018

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 24 06:24 EDT 2020. Contains 337317 sequences. (Running on oeis4.)