login
A121638
Number of deco polyominoes of height n, having no 2-cell columns. A deco polyomino is a directed column-convex polyomino in which the height, measured along the diagonal, is attained only in the last column.
1
1, 1, 2, 7, 29, 147, 889, 6252, 50163, 452356, 4529812, 49878095, 598989496, 7791393260, 109129383735, 1637539745521, 26208427321596, 445652393850867, 8023380629061127, 152470440379483009, 3049854459983511047, 64054967040282793114, 1409361745326600931517
OFFSET
1,3
COMMENTS
a(n) = A121637(n,0).
REFERENCES
E. Barcucci, A. Del Lungo and R. Pinzani, "Deco" polyominoes, permutations and random generation, Theoretical Computer Science, 159, 1996, 29-42.
FORMULA
D-finite with recurrence a(n)=(n-1)a(n-1)+a(n-3) for n>=3; a(1)=1, a(2)=1, a(3)=2.
EXAMPLE
a(2)=1 because the deco polyominoes of height 2 are the horizontal and vertical dominoes and only the horizontal one has no 2-cell column.
MAPLE
a[1]:=1: a[2]:=1: a[3]:=2: for n from 4 to 23 do a[n]:=(n-1)*a[n-1]+a[n-3] od: seq(a[n], n=1..23);
CROSSREFS
Sequence in context: A030973 A295225 A030805 * A030874 A030920 A030824
KEYWORD
nonn
AUTHOR
Emeric Deutsch, Aug 14 2006
STATUS
approved