login
A121614
Numbers that have composite sum of digits and prime sum of squares of digits.
1
27, 45, 54, 72, 78, 87, 126, 159, 162, 168, 186, 195, 207, 216, 234, 243, 249, 261, 267, 270, 276, 294, 324, 342, 348, 357, 375, 384, 405, 423, 429, 432, 438, 450, 483, 492, 504, 519, 537, 540, 573, 591, 612, 618, 621, 627, 672, 678, 681, 687, 702, 708, 720
OFFSET
1,1
LINKS
EXAMPLE
For example: the sum of digits of 27 is 9 which is composite; the sum of squares of digits of 27 is 53 which is prime.
MATHEMATICA
sod[k_, m_] := Plus @@ (IntegerDigits[k]^m); Select[ Table[n, {n, 1000}], (! PrimeQ[sod[ #, 1]] && PrimeQ[sod[ #, 2]]) &]
CROSSREFS
Cf. A091362 (Primes p such that the sum of the digits of p is not prime, but the sum of the squares of the digits of p is prime) is a prime subsequence of this sequence.
Sequence in context: A357077 A259504 A307373 * A046340 A046316 A046373
KEYWORD
base,nonn
AUTHOR
Tanya Khovanova, Sep 08 2006
STATUS
approved