login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

Primes that can be written as concatenation of two composite numbers in decimal representation.
5

%I #10 Feb 27 2021 13:43:31

%S 89,109,149,229,269,349,359,389,409,421,433,439,449,457,463,487,491,

%T 499,509,569,659,677,691,709,769,809,821,827,829,839,857,859,863,877,

%U 881,887,919,929,977,991,1009,1021,1033,1039,1049,1051,1063,1069,1087,1091

%N Primes that can be written as concatenation of two composite numbers in decimal representation.

%H Michael S. Branicky, <a href="/A121608/b121608.txt">Table of n, a(n) for n = 1..10000</a>

%e A000040(169) = 1009 = 100*10+9 = A002808(74)*10+A002808(4), therefore 1009 is a term: a(41) = 1009;

%e A000040(172) = 1021 = 10*100+21 = A002808(5)*100+A002808(12), therefore 1021 is a term: a(42) = 1021.

%o (Python)

%o from sympy import isprime

%o def comp(s): i=int(s); return s[0]!='0' and i > 1 and not isprime(i)

%o def ok(n):

%o s = str(n)

%o for i in range(1, len(s)):

%o if comp(s[:i]) and comp(s[i:]) and isprime(int(s)): return True

%o print([m for m in range(1092) if ok(m)]) # _Michael S. Branicky_, Feb 27 2021

%Y Cf. A105184, A121609, A121610.

%K nonn,base

%O 1,1

%A _Reinhard Zumkeller_, Aug 10 2006